

Metabolic Control Analysis (MCA)

Hidde de Jong INRIA Grenoble – Rhône-Alpes Hidde.de-Jong@inria.fr

INRIA Grenoble - Rhône-Alpes and IBIS

- IBIS: systems biology group at INRIA/Université Grenoble-Alpes
 - Analysis of bacterial regulatory networks by means of models and experiments
 - Biologists, computer scientists, mathematicians, physicists, ...

http://team.inria.fr/ibis

Overview

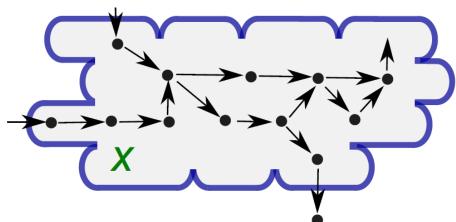
- Part 1. Systems biology and kinetic modeling
 - Introduction
 - Kinetic modeling of cellular reaction networks
- Part 2. Metabolic network modeling
 - Kinetic modeling of metabolism
 - Metabolic control analysis (MCA)
 - Flux balance analysis (FBA)
 - Practical on flux balance analysis (COBRA)
- Part 3. Gene regulatory network modeling
- Part 4. Models and data

Biochemical reaction networks

ODE model for growth of microbial populations:

$$\dot{x} = N \cdot v(x) - \mu \cdot x,$$

$$\mu = \delta \cdot \sum_{i} \alpha_{i} \cdot N_{i} \cdot v(x).$$

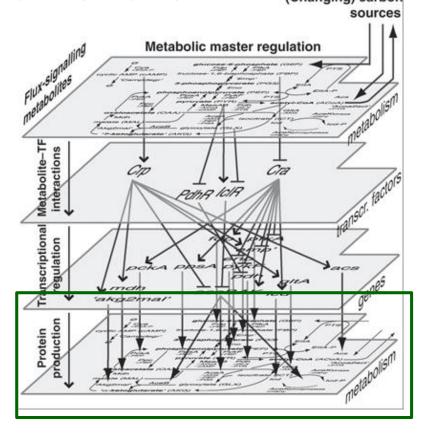


 Reaction rates depend on concentrations x of substrates, products, effectors

Metabolic networks

- Focus on subsystems that can be studied in isolation due to modular structure of reaction networks

 (Changing) carbon
 - Time-scale hierarchies
 - Connectivity structure
- Metabolic networks
 - Metabolites and enzymatic reactions
 - Short turn-over times of metabolite pools in comparison with enzyme pools



Kotte et al. (2010), Mol. Syst. Biol., 6: 355

Metabolic networks

- Models describing dynamics of metabolism
 - Effect of growth dilution can often be ignored
 - Variables are metabolites and rates of enzyme-catalyzed reactions
 - Enzyme concentrations constant on time-scale of metabolic dynamics

 $\dot{x} = N v(x)$

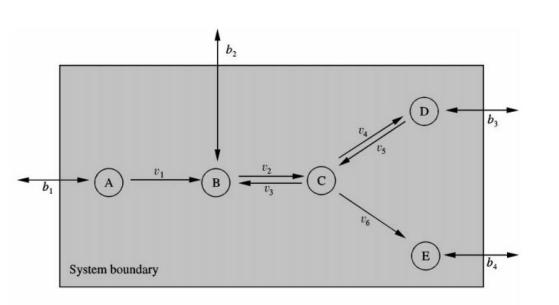
- Explicit introduction of dependency of model dynamics on parameters \boldsymbol{p} :
 - Enzyme concentrations
 - Half-saturation and catalytic constants
 - Inhibition/activation constants

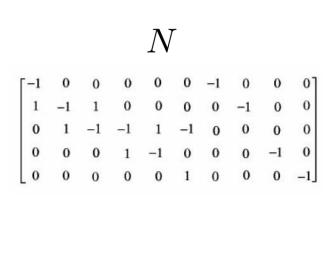
$$\dot{x} = Nv(x, p)$$

Stoichiometry matrix

• Stoichiometry matrix N describes structure of reaction network

Internal reactions and exchange reactions, reversible and irreversible





Schilling et al. (2000), J. Theor. Biol., 203(3):229-48

Stoichiometry matrix

- Stoichiometry matrix may not be full rank
 - Dependencies between rows (variables) due to conservation relations
 - Example: [ATP] + [ADP] + [AMP] constant
- Reduction of stoichiometry matrix by means of link matrix L:

$$N = L N^0, \quad x = L x^0$$

Variables in resulting metabolic system are independent

$$\dot{x}^0 = N^0 v(x^0, p)$$

• In what follows, we assume that N is full rank

Metabolic networks at steady state

 For many problems of interest, the metabolic system can be considered at steady state

$$N v(x, p) = 0$$

- Metabolism relaxes on short time-scale (seconds-minutes) after changes in environment
- Difficult to measure dynamics of metabolic adaptation
- Metabolic rates at steady state: **fluxes** $v(x^*, p) = v^*(p)$
- Trivial steady state with zero fluxes corresponds to thermodynamic equilibrium
- Steady state with non-zero fluxes requires that metabolic system is open system

Non-zero exchange fluxes

Stability of steady state

- Metabolism concerns almost exclusively sustainable processing of chemical inputs into outputs
 Biomass, energy, waste, ...
- Therefore, one expects steady states to be **stable**Grimbs et al. (2007), Mol. Syst. Biol., 3:146
- Stability criterion given by sign of (real part of) eigenvalues of Jacobian matrix

$$J(x^*) = N \left. \frac{\partial v}{\partial x} \right|_{x^*, v^*}$$

System is stable, if real part of every eigenvalue is negative

Kaplan and Glass (1995), Understanding Nonlinear Dynamics, New York

Example of simple metabolic pathway

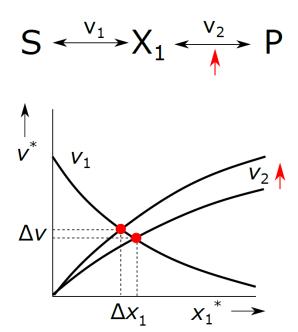
- Pathway of reactions converting substrate to product
 - S and P are supplied/removed (constant concentrations)
 - Reactions are reversible (Michaelis-Menten kinetics)

$$S \stackrel{V_1}{\longleftrightarrow} X_1 \stackrel{V_2}{\longleftrightarrow} X_2 \stackrel{V_3}{\longleftrightarrow} P$$

- Exercise: What is the stoichiometry matrix for this system?
- Exercise: How do the fluxes relate at steady state?
- Exercise: Write out the Jacobian matrix for this system
- Exercise: Determine the stability of the system. Hint: use the signs of the partial derivatives and the relation between eigenvalues and trace/determinant

Metabolic control analysis

 Steady state of system is sensitive to (local) changes in enzyme concentrations or kinetic parameters



Metabolic control analysis

- Steady state of system is sensitive to (local) changes in enzyme concentrations or kinetic parameters
- Metabolic control analysis (MCA) aims at studying this sensitivity in a systematic and rigorous manner
- MCA applies to arbitrarily complex networks
- Central questions in MCA:
 - How does the system steady state respond to changes in enzyme concentrations or kinetic parameters?
 - How does the system response depend on the network structure?
 - How constrained are sensitivities? Do they show dependencies?

Sauro (2009), Chapter 13 in Jason McDermott et al. (eds.), *Computational Systems Biology*, Humana Press, 269-309

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Fell (1997), Understanding the Control of Metabolism, Portland Press

Elasticity coefficients

- Elasticity coefficients express how the rate of a reaction changes due to a change in the reaction properties
 - Change in substrate, product, enzyme, effector concentrations
 - Change in kinetic parameter

$$\epsilon_{x_i}^{v_j} = \frac{\partial v_j}{\partial x_i} \cdot \frac{x_i}{v_j} = \frac{\partial \ln v_j}{\partial \ln x_i} = \frac{\%v_j}{\%x_i} \qquad \epsilon_{p_i}^{v_j} = \frac{\partial v_j}{\partial p_i} \cdot \frac{p_i}{v_j} = \frac{\partial \ln v_j}{\partial \ln p_i} = \frac{\%v_j}{\%p_i}$$

- Elasticities are local properties of metabolic system
- Elasticities may vary with system state for complex rate laws
- Exercise: write elasticities with respect to change in enzyme concentration for irreversible Michaelis-Menten rate law

Response coefficients

- Response coefficients express how steady state of the system changes due to a change in reaction properties
 - Flux response coefficients

$$R_{p_i}^{v_j^*} = \left. \frac{\partial v_j}{\partial p_i} \cdot \frac{p_i}{v_j} \right|_{x^*, v^*} = \left. \frac{\partial \ln v_j}{\partial \ln p_i} \right|_{x^*, v^*} = \frac{\% v_j^*}{\% p_i}$$

Concentration response coefficients

$$R_{p_i}^{x_j^*} = \left. \frac{\partial x_j}{\partial p_i} \cdot \frac{p_i}{x_j} \right|_{x^*, v^*} = \left. \frac{\partial \ln x_j}{\partial \ln p_i} \right|_{x^*, v^*} = \frac{\% x_j^*}{\% p_i}$$

- Response coefficients are global properties of metabolic system
- Response coefficients generally vary with system state
- Exercise: give examples of response coefficients for simple pathway

Response coefficients

- Response coefficients express how steady state of the system changes due to a change in reaction properties
 - Flux response coefficients

$$R_{p_i}^{v_j^*} = \left. \frac{\partial v_j}{\partial p_i} \cdot \frac{p_i}{v_j} \right|_{x^*, v^*} = \left. \frac{\partial \ln v_j}{\partial \ln p_i} \right|_{x^*, v^*} = \frac{\% v_j^*}{\% p_i}$$

Concentration response coefficients

$$R_{p_i}^{x_j^*} = \left. \frac{\partial x_j}{\partial p_i} \cdot \frac{p_i}{x_j} \right|_{x^*, v^*} = \left. \frac{\partial \ln x_j}{\partial \ln p_i} \right|_{x^*, v^*} = \frac{\% x_j^*}{\% p_i}$$

- Response coefficients are global properties of metabolic system
- Response coefficients generally vary with system state
- How can response coefficients be computed? How do they relate to elasticity coefficients?

Computation of response coefficients

• Differentiation of steady-state equation w.r.t. p:

$$N \frac{\partial v}{\partial x} \frac{\partial x}{\partial p} \bigg|_{x^*, v^*} + N \left. \frac{\partial v}{\partial p} \right|_{x^*, v^*} = 0$$

Computation of response coefficients

• Differentiation of steady-state equation w.r.t. p:

$$N \frac{\partial v}{\partial x} \frac{\partial x}{\partial p} \bigg|_{x^*,v^*} + N \left. \frac{\partial v}{\partial p} \right|_{x^*,v^*} = 0$$

$$\begin{aligned} \frac{\partial x}{\partial p} \Big|_{x^*, v^*} &= - (N \cdot \frac{\partial v}{\partial x})^{-1} \cdot N \cdot \frac{\partial v}{\partial p} \Big|_{x^*, v^*} \\ \mathrm{dg}(x)^{-1} \cdot \frac{\partial x}{\partial p} \cdot \mathrm{dg}(p) \Big|_{x^*, v^*} &= - \mathrm{dg}(x)^{-1} \cdot (N \cdot \frac{\partial v}{\partial x})^{-1} \cdot N \cdot \frac{\partial v}{\partial p} \cdot \mathrm{dg}(p) \Big|_{x^*, v^*} \\ &= - \mathrm{dg}(x)^{-1} \cdot (N \cdot \mathrm{dg}(v) \cdot \mathrm{dg}(v)^{-1} \cdot \frac{\partial v}{\partial x} \cdot \mathrm{dg}(x) \cdot \mathrm{dg}(x)^{-1})^{-1} \cdot \\ & N \cdot \mathrm{dg}(v) \cdot \mathrm{dg}(v)^{-1} \cdot \frac{\partial v}{\partial p} \cdot \mathrm{dg}(p) \Big|_{x^*, v^*} \\ R_p^{x^*} &= - (N \cdot \mathrm{dg}(v) \cdot \epsilon_x^v)^{-1} \cdot N \cdot \mathrm{dg}(v) \cdot \epsilon_p^v \Big|_{x^*, v^*} \end{aligned}$$

Control coefficients

 Separation of reaction-specific and systemic contribution to response coefficient

$$R_p^{x^*} = -\left(N \cdot \operatorname{dg}(v) \cdot \epsilon_x^v\right)^{-1} \cdot N \cdot \operatorname{dg}(v) \cdot \epsilon_p^v \Big|_{x^*, v^*}$$
$$= C_v^{x^*} \cdot \epsilon_p^v \Big|_{x^*, v^*}$$

with concentration control coefficients

$$C_v^{x^*} = -\left(N \cdot \operatorname{dg}(v) \cdot \epsilon_x^v\right)^{-1} \cdot N \cdot \operatorname{dg}(v) \big|_{x^*, v^*}$$

 Concentration control coefficients describe effect of change in rate (by whatever means) on steady-state concentration

$$R_{p_i}^{x_j^*} = C_{v_k}^{x_j^*} \cdot \epsilon_{p_i}^{v_k} \Big|_{x^*, v^*} \qquad C_{v_k}^{x_j^*} = \frac{\% x_j^*}{\% v_k}$$

Control coefficients

Similar analysis for flux response coefficients leads to

$$R_p^{v^*} = C_v^{v^*} \cdot \epsilon_p^v \Big|_{x^*, v^*}$$

with flux control coefficients

$$C_v^{v^*} = I + \epsilon_x^v \cdot C_v^{x^*} \Big|_{x^*, v^*}$$

 Flux control coefficients describe effect of change in rate (by whatever means) on fluxes at steady state

$$R_{p_i}^{v_j^*} = C_{v_k}^{v_j^*} \cdot \epsilon_{p_i}^{v_k} \Big|_{x^*, v^*} \qquad C_{v_k}^{v_j^*} = \frac{\% v_j^*}{\% v_k}$$

 Above analysis provides conceptual framework, but is not very practical for computational purposes

Summation and connectivity theorems

 Above analysis can be further developed into MCA summation theorems:

$$C_v^{x^*} \cdot 1 = 0,$$
 $\sum_k C_{v_k}^{x_j^*} = 0$ $C_v^{v^*} \cdot 1 = 1,$ $\sum_k C_{v_k}^{v_j^*} = 1$

- Flux control is distributed over the system
- Idem for MCA connectivity theorems:

$$C_{v}^{x^{*}} \cdot \epsilon_{x}^{v} = -I, \qquad \sum_{k} C_{v_{k}}^{x_{j}^{*}} \cdot \epsilon_{x_{i}}^{v_{k}} = -\delta_{ji} \qquad \delta_{ji} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

$$C_{v}^{v^{*}} \cdot \epsilon_{x}^{v} = 0, \qquad \sum_{k} C_{v_{k}}^{v_{j}^{*}} \cdot \epsilon_{x_{i}}^{v_{k}} = 0$$

Example of simple metabolic pathway

$$S \stackrel{V_1}{\longleftrightarrow} X_1 \stackrel{V_2}{\longleftrightarrow} X_2 \stackrel{V_3}{\longleftrightarrow} P$$

- Exercise: write down the flux summation and connectivity theorems for the model of this pathway
- Exercise: find expressions for flux control coefficients in terms of elasticities. What can be learned from these expressions?

Example of simple pathway with feedback

Pathway with negative feedback on level of enzyme activity

$$S \xrightarrow{V_1} X_1 \xrightarrow{V_2} X_2 \xrightarrow{V_3} P$$

 Question: in case of strong feedback, if we would like to increase production of P, which reaction should we target?

Example of simple pathway with feedback

Pathway with negative feedback on level of enzyme activity

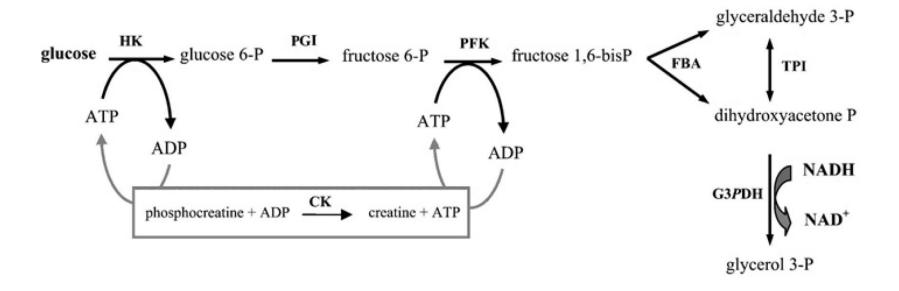
$$S \xrightarrow{V_1} X_1 \xrightarrow{V_2} X_2 \xrightarrow{V_3} P$$

- Question: in case of strong feedback, if we would like to increase production of P, which reaction should we target?
- Answer: reaction 3 (counter-intuitive)

Sauro (2009), Chapter 13 in Jason McDermott et al. (eds.), *Computational Systems Biology*, Humana Press, 269-309

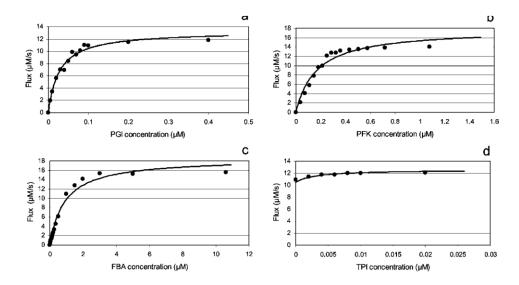
In-vitro reconstruction of glycolysis

 Upper part of glycolysis pathway has been reconstructed in vitro and quantitatively modeled



In-vitro reconstruction of glycolysis

- Upper part of glycolysis pathway has been reconstructed in vitro and quantitatively modeled
- How does flux respond to change in enzyme concentration?

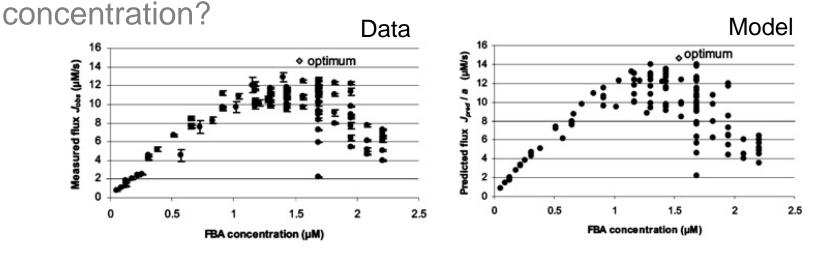


 Positive flux control coefficients for all enzymes, as expected from theoretical analysis

Fiévet et al. (2006), Biochem. J., 396:317-26

In-vitro reconstruction of glycolysis

- Upper part of glycolysis pathway has been reconstructed in vitro and quantitatively modeled
- How does flux respond to change in enzyme concentration?
- How can flux be optimized for given total enzyme



Maximum attained for intermediate enzyme concentrations

Fiévet et al. (2006), Biochem. J., 396:317-26

In-vivo control of glycolytic flux

 How is flux through glycolysis controlled in bacteria? What is role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

 Approach: augment intracellular ATP consumption Inducible (uncoupled) ATPase activity

In-vivo control of glycolytic flux

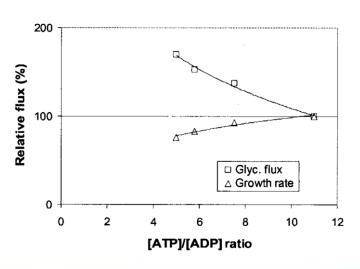
 How is flux through glycolysis controlled in bacteria? What is role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

- Approach: augment intracellular ATP consumption
- Metabolic control analysis of simplified system

substrate
$$\xrightarrow{e_1} \Delta G_p \xrightarrow{e_2}$$
 growth

 ATPase expression decreases growth rate and increases glycolytic fluxes



In-vivo control of glycolytic flux

 How is flux through glycolysis controlled in bacteria? What is role of ATP demand?

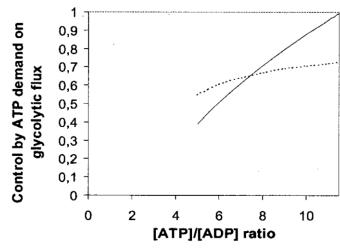
ATP produced by glycolyis and consumed by other cellular processes

- Approach: augment intracellular ATP consumption
- Metabolic control analysis of simplified system

substrate
$$\xrightarrow{e_1} \Delta G_p \xrightarrow{e_2}$$
 growth

$$C_{e_2}^J = \frac{-\varepsilon_p^{\epsilon_1}}{\varepsilon_p^{e_2} - \varepsilon_p^{e_1}}$$

- ATPase expression decreases growth rate and increases glycolytic fluxes
- In wild-type cells at least 75% of glycolytic control exerted by ATP demand



Conclusions

- Metabolic systems often analyzed at (stable) steady state
- Metabolic flux analysis (MCA) quantifies sensitivity of fluxes and concentrations to changes in parameters and inputs
- Well-established and powerful mathematical framework
- Dedicated computer tools supporting the analysis
- Many applications demonstrating its practical use in systems biology and synthetic biology/metabolic engineering

Merci!

team.inria.fr/ibis