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• IBIS: systems biology group at INRIA/Université Grenoble-Alpes

– Analysis of bacterial regulatory networks by means of models and 

experiments

– Biologists, computer scientists, mathematicians, physicists, …
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http://team.inria.fr/ibis



Overview

• Part 1. Systems biology and kinetic modeling

– Introduction

– Kinetic modeling of biochemical reaction networks

• Part 2. Metabolic network modeling

– Kinetic modeling of metabolism

– Metabolic control analysis (MCA)

– Flux balance analysis (FBA)

– Practical on flux balance analysis (COBRA)

• Part 3. Gene regulatory network modeling

• Part 4. Models and data
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Bacterial growth and metabolism

• Bacterial metabolism is flexible, allowing cells to grow on 

different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose

• Adaptation of bacterial physiology to different carbon sources

Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84
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• Coordination of adaptative responses of bacterial cell

achieved by large and complex regulatory networks
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Coordination of adaptative responses

Kotte et al. (2010), Mol. Syst. Biol., 6: 355

– Variety of molecular mechanisms…

– … operating on different time-

scales…



• Coordination of adaptative responses of bacterial cell

achieved by large and complex regulatory networks
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Coordination of adaptative responses

Kotte et al. (2010), Mol. Syst. Biol., 6: 355

– Variety of molecular mechanisms…

– … operating on different time-

scales…

– … involving numerous feedback 

loops across levels



• Coordination of adaptative responses of bacterial cell achieved

by large and complex regulatory networks

• Abundant knowledge on biochemical mechanisms underlying

interactions between network components

• Accumulation of data on multi-level response of network to 

external perturbations

Metabolic fluxes and cellular concentrations of metabolites, enzymes, 

transcription factors, signalling molecules, …

• However, global view on functioning of  entire network is

difficult to achieve and largely absent today

• Use of models to analyse and predict dynamical behaviour of 

system

Emergence of new discipline: systems biology

No global view on network functioning

7



Growth of microbial populations

• Growth can be considered on the level of number of 

individual cells or aggregated volume of growing

population

Segregated vs nonsegregated models

8

de Jong et al. (2017), J. Roy. Soc. Interface, 14(136):20170502



Growth of microbial populations

• Ordinary differential equation (ODE) model of the growth of a 

population of microorganisms

Growth rate

• Solution of growth model for constant growth rate

Doubling time             
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Growth of microbial populations

• If all cells have same growth rate, segregated and 

nonsegregated models are identical

• But: growth rate of cells in population may be heterogeneous

– Bacterial persistence after antibiotics treatment

10

Balaban et al. (2004), Science, 305(5690):1622-5



Growth of microbial populations

• If all cells have same growth rate, segregated and 

nonsegregated models are identical

• But: growth rate of cells in population may be heterogeneous

– Bacterial persistence after antibiotics treatment
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Growth of microbial populations

• If all cells have same growth rate, segregated and 

nonsegregated models are identical

• But: growth rate of cells in population may be heterogeneous

– Bacterial persistence after antibiotics treatment

– Persister cellss have lower growth rate before antibiotics treatment
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Balaban et al. (2004), Science, 305(5690):1622-5



Volume and macromolecular contents

• Growth is fueled by biochemical processes

• Models describing molecular constituents and biochemical

reactions in which they are involved

Structured vs unstructured models
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Volume and macromolecular contents

• Basic assumption: volume proportional to biomass (total 

mass of molecular constituents in cells)

Dry mass of constituent i

Biomass

• In other words, biomass density is constant:
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Volume and macromolecular contents

• Assumption of constant biomass density supported by 

experimental data

Biomass density approximately
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Basan et al. (2015), Mol. Syst. Biol., 11:836-5



Volume and macromolecular contents

• Concentration                 of molecular constituent i in 

population:

• If all cells have same concentration, then also applies to 

individual cells
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• But: concentrations may

be heterogeneous, 

leading to different

growth phenotypes

Enzymes for secondary

carbon sources in E. coli

Afroz et al. (2014), Mol. Microbiol., 93(6):1093-1103 



Volume and macromolecular contents

• Concentration                 of molecular constituent i in 

population:

• If all cells have same concentration, then also applies to 

individual cells

• Consequence of proportionality of mass and volume: total 

concentration is constant
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Volume and macromolecular contents

• ODE model of dynamics of molecular constituent i :

Appearance of term for growth dilution of individual constituents

• Growth rate follows from dynamics of molecular constituents

No growth dilution if mass of all constituents remains constant

18



Volume and macromolecular contents

• Growth dilution may have an important effect on the 

concentration of cellular constituents

19

Klumpp et al. (2009), Cell, 139(7):1366-75

− Changes in rate of protein synthesis and decay of constitutive gene



Volume and macromolecular contents

• Growth dilution may have an important effect on the 

concentration of cellular constituents
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− Changes in rate of protein synthesis and decay of constitutive gene

− Concentration of gene product is growth-rate dependent

Klumpp et al. (2009), Cell, 139(7):1366-75



Biochemical reactions underlying growth

• Term represents net effect of biochemical reactions

on concentration of molecular constituent i

• Change of variables:

Rate of reactions based on physical encounters of molecules

• ODE model of dynamics of molecular constituent i :
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Biochemical reactions underlying growth

• Reformulation of reaction rates

– Rate of reaction j :

– Stoichiometry of constituent i in reaction j :
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…- constituent i -…

…+ constituent i +…



Biochemical reactions underlying growth

• Stoichiometry matrix describes structure of reaction

network

Internal reactions and exchange reactions, reversible and irreversible
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Schilling et al. (2000), J. Theor. Biol., 203(3):229-48



Biochemical reactions underlying growth

• Reformulation of reaction rates

– Vector of reaction rates:

– Stoichiometry of constituent i in reaction j :

– Vector of concentrations of molecular constituents:

• Stoichiometry model of biochemical reactions
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Biochemical reactions underlying growth

• Stoichiometry model of biochemical reactions

• Expression of growth rate

– Rate of accumulation of (mass of) constituents (within unit volume per 

unit time) relative to total amount of constituents (within unit volume)

– Not ad-hoc definition, but derived from basic assumptions
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Biochemical reactions underlying growth

• ODE model for growth of microbial populations:

• Reaction rates depend on concentrations    of substrates, 

products, effectors
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Enzyme kinetics

• Mass-action kinetics is based on fundamental law for rate 

of biochemical reactions

Rates are proportional to concentrations of reactants

where the following conservation relations hold:

27

C P+ES+E



Enzyme kinetics

• Mass-action kinetics is based on fundamental law for rate 

of biochemical reactions

Rates are proportional to concentrations of reactants

• Question: What is the stoichiometry matrix for this system?

• Question: What are the units of the parameters if 

concentrations are expressed in mol L-1?

• Question: How can the equation system be simplified using

the conservation relations? Hint: keep s and c
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C P+ES+E



Enzyme kinetics

• Simplified equation system for enzymatic reaction:

• Quasi-steady state assumption:

• Quasi-steady state assumption leads to Michaelis-Menten

kinetics: 
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Enzyme kinetics

• Simplified equation system for enzymatic reaction:

• Quasi-steady state assumption:

• Quasi-steady state assumption leads to Michaelis-Menten

kinetics

• Quasi-steady state assumption valid under certain 

conditions on the parameters
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Chen et al (2010), Genes Dev., 24(17):1861-75



Enzyme kinetics

• Michaelis-Menten kinetics for reversible enzymatic

reaction

• Michaelis-Menten kinetics for reversible enzymatic reaction

with competitive enzyme inhibition

31

No inhibitor



Enzyme kinetics

• Michaelis-Menten kinetics for reversible enzymatic

reaction

• Michaelis-Menten kinetics for reversible enzymatic reaction

with competitive enzyme inhibition

32

Inhibitor



Enzyme kinetics

• Many other rate laws for enzyme kinetics have been 

proposed

– Generalization to multiple substrates and products

– Thermodynamic view, separating enzyme-dependent from enzyme-

independent properties

– Convenient mathematical approximations

• Rate laws for gene expression kinetics and signal 

transduction kinetics introduced in later courses
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Cornish-Bowden (2004), Fundamentals of Enzyme Kinetics, Portland Press



Growth in a changing environment

• No explicit model of the environment

Some reactions in      correspond to uptake of substrates or secretion

of products

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume

– Substrate/product concentrations in medium:

– Volume of medium:

34

Source: wikpedia



Growth in a changing environment

• No explicit model of the environment

Some reactions in      correspond to uptake of substrates or secretion

of products

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume

– Substrate/product concentrations in medium:

– Volume of medium:

• ODE model for dynamics of substrate/product

concentrations in medium

– Stoichiometry matrix for exchange reactions:

– Diagonal matrix of molar mass coefficients:
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Growth in a changing environment

• No explicit model of the environment

Some reactions in      correspond to uptake of substrates or secretion

of products

• Environment modeled as bioreactor filled by liquid medium 

of fixed volume

– Substrate/product concentrations in medium:

– Volume of medium:

• ODE model for dynamics of substrate/product

concentrations in medium
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Growth in a changing environment

• ODE model for growth of microbial populations:
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Growth in a changing environment

• ODE model for growth of microbial populations:

• Model applies to batch cultivation, but can be easily adapted

for continuous culture or fed-batch culture
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Bastin and Dochin (1990), On-Line Estimation and Adaptive Control of Bioreactors, Elsevier, 1990



Growth in a changing environment

• Bioreactor models have been mostly used in context of 

biotechnological applications

• But: they also apply to complex natural environments, such

as digestive tracts of vertebrates and insects
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Godon et al. (2013), BioEnergy Res., 6(3):1063-81



Towards integrated models of the cell

• Integrated models of the cell are emerging, but some

interesting precursors exist

Coarse-grained model of an E. coli cell
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Domach et al. (1984), Biotechnol. Bioeng., 26(3):203-16



Towards integrated models of the cell

• Integrated models of the cell are emerging, but some

interesting precursors exist

Coarse-grained model of an E. coli cell
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Shuler et al. (2012), Methods Mol. Biol., 881:573-610

• Model has evolved into

minimal, functionally

complete model of 

chemoheterotrophic

bacterium



Towards integrated models of the cell

• Integrated models of the cell are emerging, but some

interesting precursors exist

Coarse-grained model of an E. coli cell
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Shuler et al. (2012), Methods Mol. Biol., 881:573-610

• Model has evolved into

minimal, functionally

complete model of 

chemoheterotrophic

bacterium



Whole-cell model M. genitalium

• Metabolic networks are integrated with gene networks and 

signalling networks

Complex multi-level system with feedback across different time-

scales

Karr et al. (2012), Cell, 150(2): 389-401
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Whole-cell model of 

Mycoplasma genitalium



Whole-cell model M. genitalium

• Whole-cell model represents huge modelling effort:

– Whole-genome model including complete known metabolic, gene, and 

signalling networks

– Variety of formalisms to model the 28 modules: FBA, kinetic ODE 

models, Boolean models, Markov chains, …

– Cell cycle simulated for >100 cells, >30 mutants on 128-core machine

Karr et al. (2012), Cell, 150(2): 389-401
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Whole-cell model M. genitalium

• Whole-cell simulation of M. genitalium cell cycle
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Whole-cell model M. genitalium

• Whole-cell simulations have provided new insights into

global use and allocation of energy

Karr et al. (2012), Cell, 150(2): 389-401

– Transcription and translation most

costly processes

– Energy use largely independent of 

cell-cycle length

– Usage of almost half of produced

energy not accounted for! 
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Whole-cell models

• Whole-cell models help analyze the dynamics of interactions 

between multiple functions of the cell

Models allow predictions to be confronted with experimental data and 

performance of thought experiments

• But whole-cell models have problems as well!

– Models difficult to construct, to debug and to maintain

– Huge number of parameters, many unknown: parameter estimation 

is a difficult problem requiring many data of high quality

– How do we extract fundamental insights on cell functioning from

large, mechanistic models?
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Whole-cell models

• Whole-cell models help analyze the dynamics of interactions 

between multiple functions of the cell

Models allow predictions to be confronted with experimental data and 

performance of thought experiments

• But whole-cell models have problems as well!
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Alternatives to whole-cell models

• Focus on subsystems that can be studied in isolation due 

to modular structure of reaction networks

– Time-scale hierarchies

– Connectivity structure
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355

• Metabolic networks

– Metabolites and enzymatic

reactions

– Short turn-over times of 

metabolite pools in comparison

with enzyme pools



Alternatives to whole-cell models

• Focus on subsystems that can be studied in isolation due 

to modular structure of reaction networks

– Time-scale hierarchies

– Connectivity structure

50

Kotte et al. (2010), Mol. Syst. Biol., 6: 355

• Gene regulatory networks

– Genes, proteins, and regulatory

interactions

– Limited number of indirect 

interactions mediated by (fast) 

metabolic networks



Alternatives to whole-cell models

• Focus on subsystems that can be studied in isolation due 

to modular structure of reaction networks

– Time-scale hierarchies

– Connectivity structure

• Coarse-grained models that aggregate reactions into

macroreactions of major functions

Resource allocation models
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Scott et al. (2014), Mol. Syst. Biol., 10:747

S: substrate

P: precursor metabolites

M: metabolic machinery (enzymes)

R: gene expression machinery (ribosomes)



Conclusions

• Adaptation of bacteria to their environment involves

reorganisation of cellular physiology

• Adaptation process achieved by large and complex

regulatory networks

Nonlinear dynamical systems with feedback across different time-

scales

• Fundamental questions on network functioning require

integrated models of the cell
Metabolism, gene expression, growth, signalling, …

• Formal framework based on kinetic modeling

• Detailed whole-cell models vs models of modular

subsystems and coarse-grained models

• Metabolic networks and gene regulatory networks
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Merci !

team.inria.fr/ibis


