

Quantitative modeling of gene regulatory networks

Hidde de Jong IBIS INRIA Grenoble – Rhône-Alpes Hidde.de-Jong@inria.fr

November 4, 2020

INRIA Grenoble - Rhône-Alpes and IBIS

- IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS
 - Analysis of bacterial regulatory networks by means of models and experiments
 - Biologists, computer scientists, mathematicians, physicists, ...

http://ibis.inrialpes.fr

nain

UNIVERSITÉ

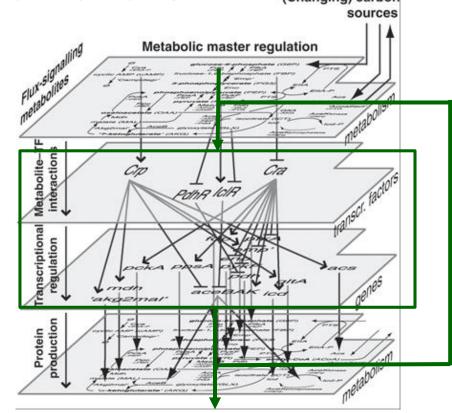
Overview

- Part 1. Systems biology and kinetic modeling
- Part 2. Metabolic network modeling
- Part 3. Gene regulatory network modeling
 - Quantitative modeling of gene regulatory networks
 - Qualitative modeling of gene regulatory networks
 - Stochastic modeling of gene regulatory networks
 - Practical on integrated models of bacterial growth (Matlab)
- Part 4. Models and data

- Focus on **subsystems** that can be studied in isolation due to **modular structure** of reaction networks
 (Changing) carbon
 - Time-scale hierarchies
 - Connectivity structure

Gene regulatory networks

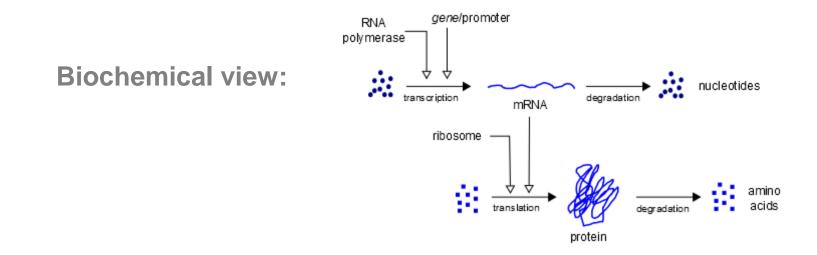
- Genes, proteins, and regulatory interactions
- Reactions involved in transcription and translation and their regulation
- Time-scale: min (mRNA) to h (proteins)



Kotte et al. (2010), Mol. Syst. Biol., 6: 355

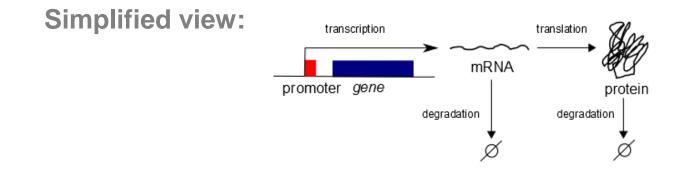
Gene expression

- Typically, and simplifying quite a bit, **gene expression** in bacteria involves:
 - Transcription by RNA polymerase (mRNA)
 - Translation by ribosomes (proteins)
 - Degradation of mRNA and protein



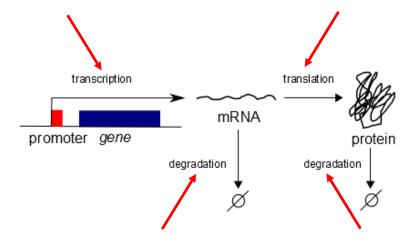
Gene expression

- Typically, and simplifying quite a bit, **gene expression** in bacteria involves:
 - Transcription by RNA polymerase (mRNA)
 - Translation by ribosomes (proteins)
 - Degradation of mRNA and protein

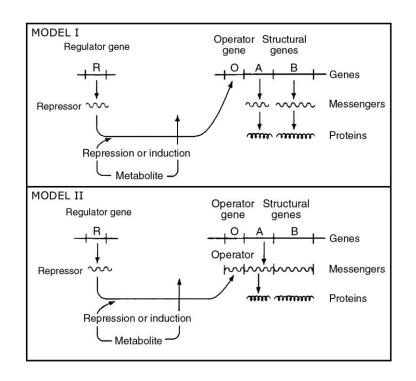


Regulation of gene expression

- Typically, and simplifying quite a bit, **regulation of gene expression** in bacteria involves:
 - Transcription regulation by transcription factors
 - Translation regulation by small RNAs
 - Regulation of degradation by proteases



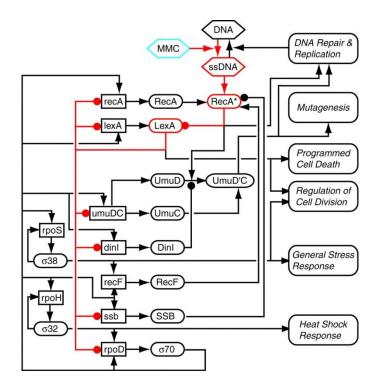
• Gene regulatory networks control changes in expression levels in response to environmental perturbations



Original lac operon model

Jacob and Monod (1961), J. Mol. Biol., 3(3):318-56

 Gene regulatory networks control changes in expression levels in response to environmental perturbations

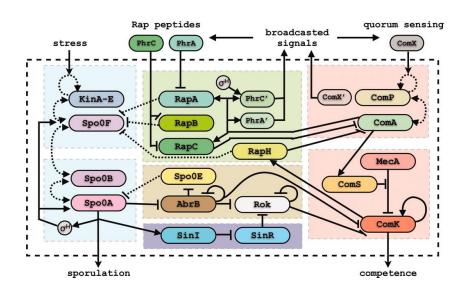


SOS response network in E. coli

Gardner et al. (2011), Science, 301(5629):102-5

 Gene regulatory networks control changes in expression levels in response to environmental perturbations

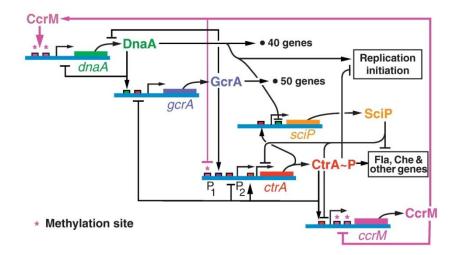
Sporulation and competence network in *B. subtilis*



Schultz et al. (1961), Proc. Natl. Acad. Sci. USA, 106(50):21027-34

 Gene regulatory networks control changes in expression levels in response to environmental perturbations

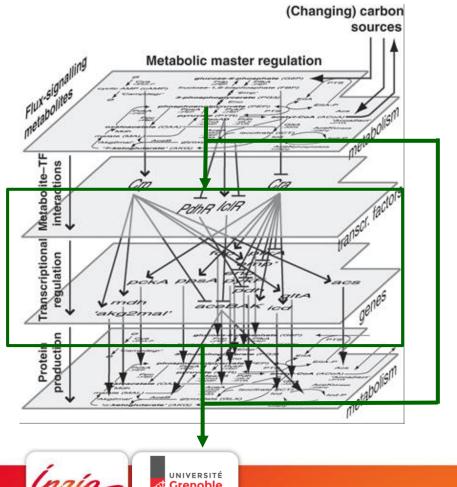
Cauleobacter cell cycle network



McAdams and Shapiro (2011), J. Mol. Biol., 409(1):28-35

Broader view on gene regulatory networks

Gene regulatory networks control changes in expression levels in response to environmental perturbations



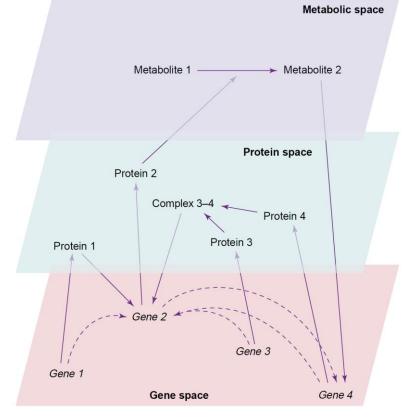
Grenoble

- But: adaptation of gene expression leads to changes in metabolism which feed back into regulatory network
- Indirect regulatory interactions: metabolic coupling

Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812

Broader view on gene regulatory networks

Gene regulatory networks control changes in expression levels
 in response to environmental perturbations



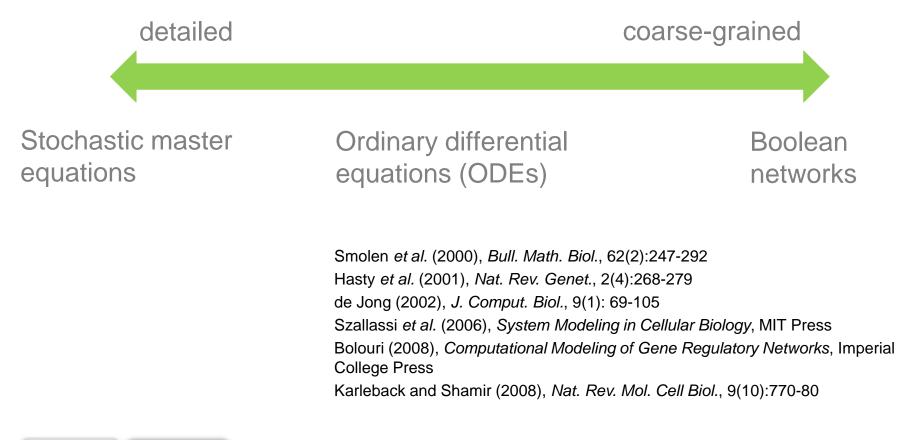
nnía

- But: adaptation of gene expression leads to changes in metabolism which feed back into regulatory network
- Indirect regulatory interactions: metabolic coupling

Braznik et al. (2002), Trends Biotechnol., 20(11):467-71

13

 Different modeling formalisms exist, describing gene expression on different levels of detail



Ordinary differential equation models

• Concentration of proteins, mRNAs, and other molecules at time-point *t* represented by continuous variable $x_i(t) \in \mathbb{R}_{\geq 0}$ Concentration on level of (growing) cell population

• Concentration variable defined by dividing amount of molecules by volume $x_i(t) = X_i(t)/Vol(t)$

Ordinary differential equation models

- Concentration of proteins, mRNAs, and other molecules at time-point *t* represented by continuous variable $x_i(t) \in \mathbb{R}_{\geq 0}$ Concentration on level of (growing) cell population
- Regulatory interactions, controlling synthesis and degradation, modeled by ordinary differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x} = N v(x),$$

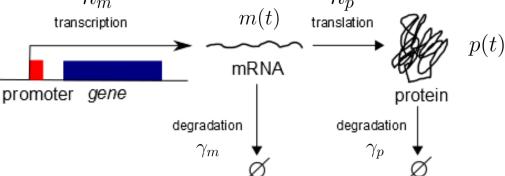
where $\boldsymbol{x} = [x_1, \dots, x_n]$ and $\boldsymbol{v}(\boldsymbol{x})$ is rate law

• Kinetic theory of biochemical reactions provides wellestablished framework for specification of rate laws

> Heinrich and Schuster (1996), *The Regulation of Cellular Systems*, Chapman & Hall Cornish-Bowden (1995), *Fundamentals of Enzyme Kinetics*, Portland Press

• ODE model of gene expression, distinguishing transcription and translation $\kappa_m \qquad \kappa_p$

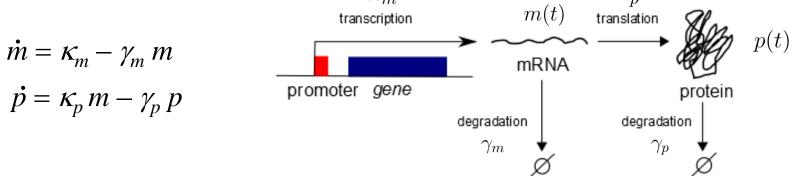
 $\dot{m} = \kappa_m - \gamma_m m$ $\dot{p} = \kappa_p m - \gamma_p p$



 $m(t) \ge 0$, concentration mRNA $p(t) \ge 0$, concentration protein κ_m , $\kappa_p > 0$, synthesis rate constants

 γ_m , $\gamma_p > 0$, degradation rate constants

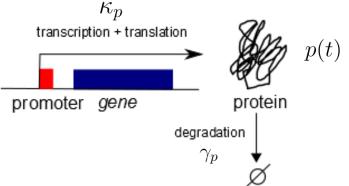
• ODE model of gene expression, distinguishing transcription and translation $\kappa_m \qquad \kappa_p$



 Question: write down gene expression model in stoichiometric form

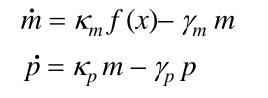
ODE model of gene expression, collapsing transcription and translation

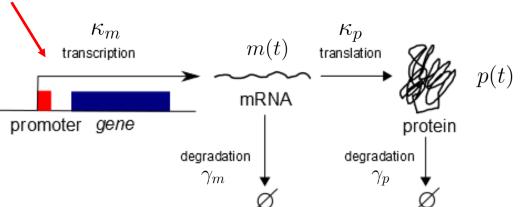
$$\dot{p} = \kappa_p - \gamma_p p$$



 $p(t) \ge 0$, concentration protein $\kappa_p > 0$, synthesis rate constant $\gamma_p > 0$, degradation rate constant

ODE model of gene expression, taking into account regulation of transcription



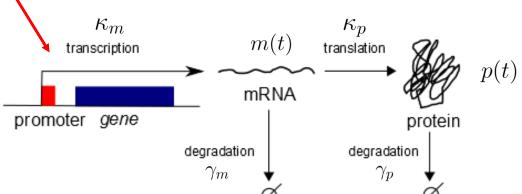


• Regulation function f(x) describes modulation of synthesis rate by transcription factor

Generalization to regulation on translational and proteolytic level

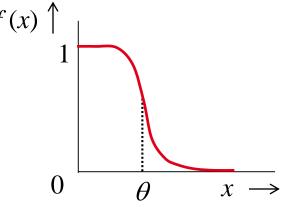
 ODE model of gene expression, taking into account regulation of transcription

 $\dot{m} = \kappa_m f(x) - \gamma_m m$ $\dot{p} = \kappa_p m - \gamma_p p$



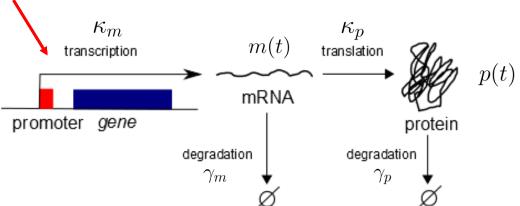
• Regulation function f(x) typically has **sigmoidal** form, due to cooperative nature of regulation $f(x) \uparrow_{-1}$

$$f(x) = \frac{\theta^{n}}{\theta^{n} + x^{n}}, \quad \theta > 0 \text{ threshold,} \\ n > 1 \text{ cooperativity}$$



ODE model of gene expression, taking into account regulation of transcription

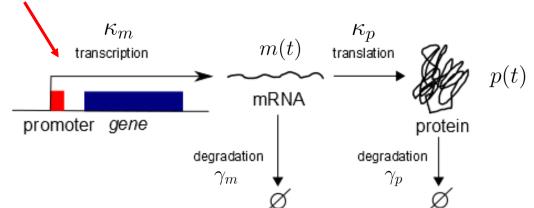
 $\dot{m} = \kappa_m f(x) - \gamma_m m$ $\dot{p} = \kappa_p m - \gamma_p p$



- Regulation function f (x) typically has sigmoidal form, accounting for cooperative nature of regulation
- Implicit modeling assumptions:
 - Ignore gene expression machinery (RNA polymerase, ribosome)
 - Simplification of complex protein-DNA interactions to response function
 - No effect of growth dilution

 ODE model of gene expression, taking into account regulation of transcription

 $\dot{m} = \kappa_m f(x) - \gamma_m m$ $\dot{p} = \kappa_p m - \gamma_p p$



 Gene regulatory network has many genes with mutual regulatory interactions: model of coupled ODEs

Analysis and numerical simulation

- No analytical solution for most nonlinear differential equations
- Dynamic systems theory provides techniques for analysis of nonlinear differential equations, but usually not scalable
 - Phase portrait

Kaplan and Glass (1995), *Understanding Nonlinear Dynamics*, New York

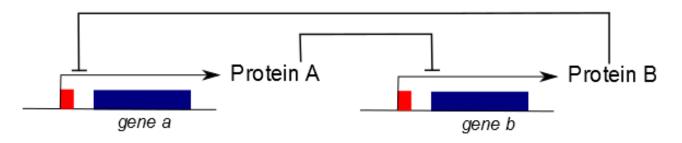
- Bifurcation analysis
- Approximation of solution obtained by **numerical simulation**, given parameter values and initial conditions $x(0) = x^0$

$$x (t + \Delta t) = x (t) + \int_{t}^{t + \Delta t} f(x) dt \approx x (t) + f(x) \Delta t$$

$$x (t + \Delta t) = x (t) + \int_{t}^{t + \Delta t} f(x) dt \approx x (t) + f(x) \Delta t$$
Lambert (1991), Numerical Methods
for Ordinary Differential Equations, Wiley

Cross-inhibition network

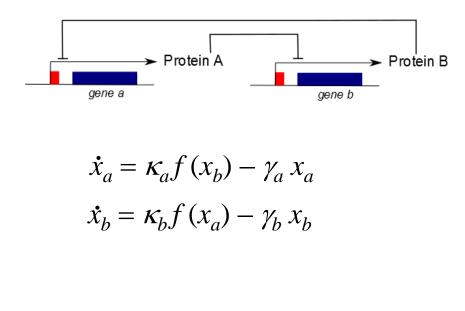
• **Cross-inhibition** network consists of two genes, each coding for transcription regulator inhibiting expression of other gene



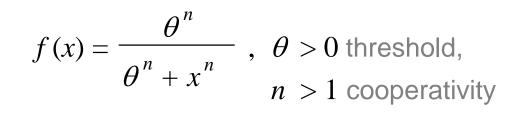
• Cross-inhibition network is example of **positive feedback**, important for phenotypic differentiation (multi-stability)

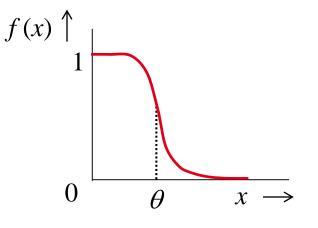
Thomas and d'Ari (1990), Biological Feedback, CRC Press

ODE model of cross-inhibition network



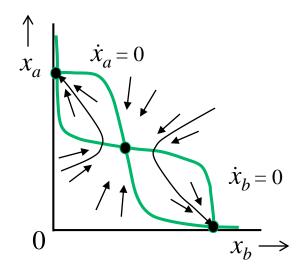
 $x_a(t) \ge 0$, concentration protein A $x_b(t) \ge 0$, concentration protein B κ_a , $\kappa_b > 0$, synthesis rate constants γ_a , $\gamma_b > 0$, degradation rate constants





Bistability of cross-inhibition network

• Analysis of steady states in phase plane



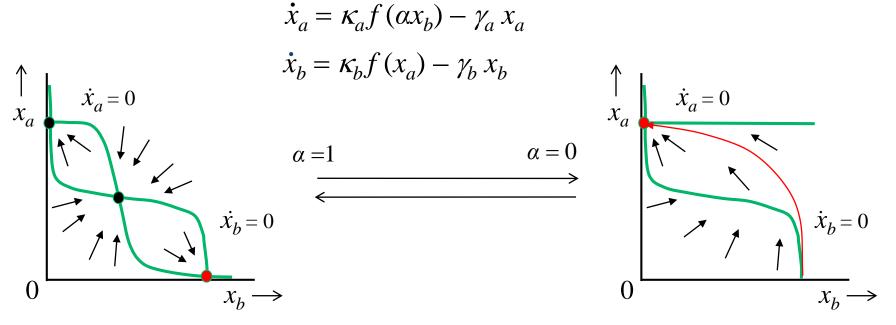
$$\dot{x}_a = 0 \Longrightarrow x_a = (\kappa_a / \gamma_a) f(x_b)$$
$$\dot{x}_b = 0 \Longrightarrow x_b = (\kappa_b / \gamma_b) f(x_a)$$

- System is **bistable**: two stable and one unstable steady state.
- For almost all initial conditions, system will converge to one of two stable steady states (differentiation)
- System returns to steady state after small perturbation

Hysteresis in cross-inhibition network

• Transient perturbation may cause irreversible switch from one steady state to another (**hysteresis**)

Modulation of regulatory effect of one of regulators (α)

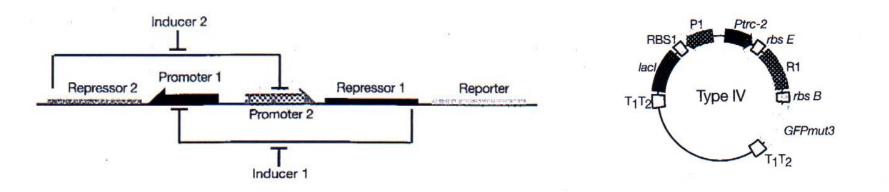


Change in parameter causes saddle-note bifurcation

Construction of cross inhibition network

• Construction of cross inhibition network in vivo

Gardner et al. (2000), Nature, 403(6786): 339-42

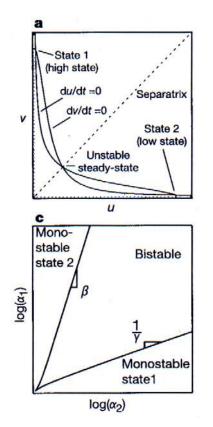


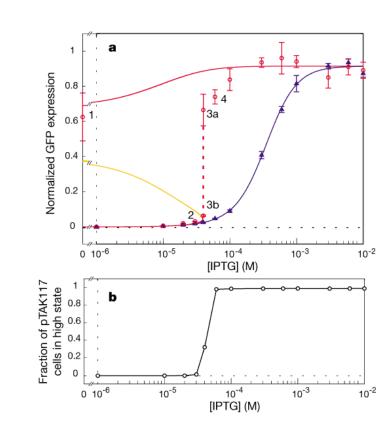
• ODE model of network

$$\dot{u} = \frac{\alpha_1}{1+v^{\beta}} - u \qquad \qquad \dot{v} = \frac{\alpha_2}{1+u^{\gamma}} - v$$

Experimental test of model

• Experimental test of mathematical model (bistability and hysteresis) Gardner *et al.* (2000), *Nature*, 403(6786): 339-42



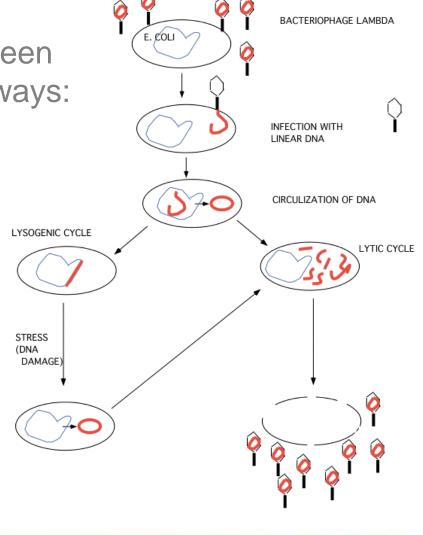


Bacteriophage λ infection of *E. coli*

 Response of *E. coli* to phage λ infection involves decision between alternative developmental pathways:
 Iysis and Iysogeny

Ptashne, A Genetic Switch, Cell Press, 1992

HEAD



DNA CAPSULE TAIL SHEATH TAIL PLATE TAIL CORE TAIL FIBERS Bacteriophage

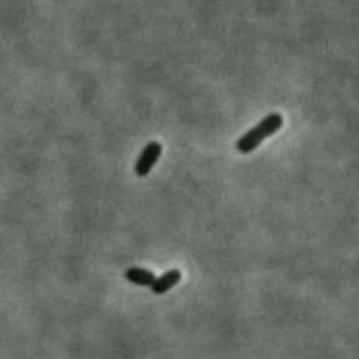
> UNIVERSITÉ Grenoble

Alpes

Bacteriophage λ infection of *E. coli*

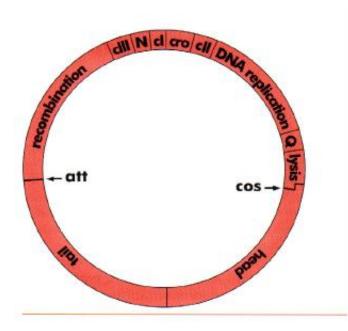
 Response of *E. coli* to phage λ infection involves decision between alternative developmental pathways: lysis and lysogeny

Ptashne, A Genetic Switch, Cell Press, 1992



Bistability in phage λ

 Lytic and lysogenic pathways involve different patterns of gene expression

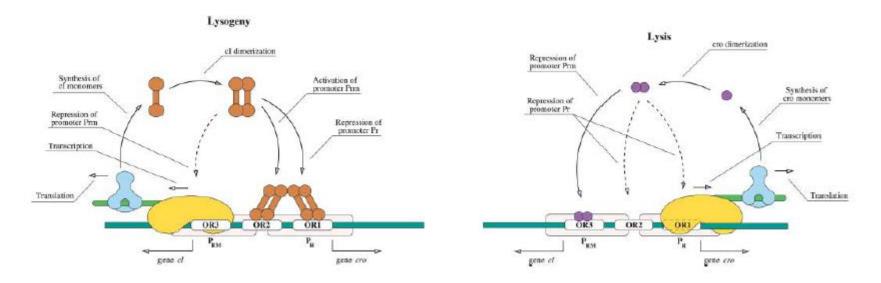


Ptashne, A Genetic Switch, Cell Press, 1992



Control of phage λ fate decision

 Cross-inhibition feedback plays key role in establishment of lysis or lysogeny, as well as in induction of lysis after DNA damage



Santillán and Mackey (2004), Biophys. J., 86(1):75-84

Simple model of phage λ fate decision

- Differential equation model of cross-inhibition feedback network involved in phage λ fate decision

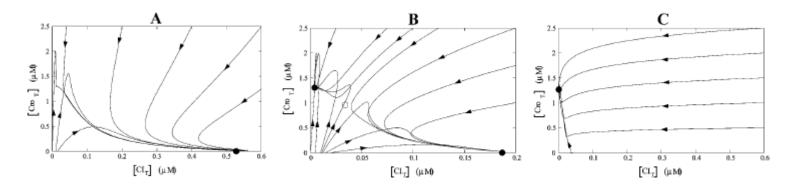
mRNA and protein, delays, thermodynamic description of gene regulation

$$\begin{aligned} \frac{d[M_{cI}]}{dt} &= k_{cI}^{q}[O_{R}]f_{RM}^{q}([CI_{2}]_{\tau_{M}}, [CI_{2}]_{\tau_{M}}) \\ &+ k_{cI}^{s}[O_{R}]f_{RM}^{s}([CI_{2}]_{\tau_{M}}, [Cro_{2}]_{\tau_{M}}) - (\boldsymbol{\gamma}_{M} + \boldsymbol{\mu})[M_{cI}], \end{aligned}$$
$$\begin{aligned} \frac{d[M_{cro}]}{dt} &= k_{cro}[O_{R}]f_{R}([CI_{2}]_{\tau_{M}}) - (\boldsymbol{\gamma}_{M} + \boldsymbol{\mu})[M_{cro}], \end{aligned}$$
$$\begin{aligned} \frac{d[CI_{T}]}{dt} &= \boldsymbol{v}_{cI}[M_{cI}]_{\tau_{cI}} - (\boldsymbol{\gamma}_{cI} + \boldsymbol{\mu})[CI_{T}], \end{aligned}$$
$$\begin{aligned} \frac{d[Cro_{T}]}{dt} &= \boldsymbol{v}_{cro}[M_{cro}]_{\tau_{cro}} - (\boldsymbol{\gamma}_{cro} + \boldsymbol{\mu})[Cro_{T}]. \end{aligned}$$

Santillán and Mackey (2004), Biophys. J., 86(1):75-84

Analysis of phage λ model

- Bistability (lysis and lysogeny) only occurs for certain parameter values
- Switch from lysogeny to lysis involves bifurcation from one monostable regime to another, due to change in degradation constant



Santillán and Mackey (2004), Biophys. J., 86(1):75-84

Extended model of phage λ infection

 ODE model of the extended network underlying decision between lysis and lysogeny

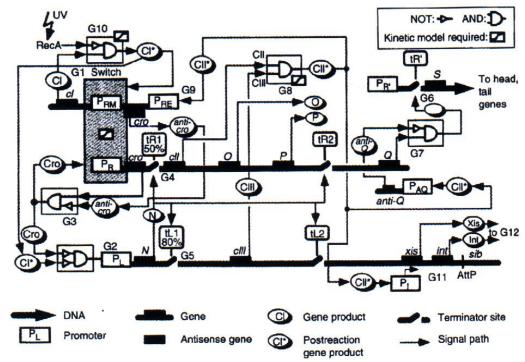
Role of other regulatory proteins (CII, N, Q, ...)

McAdams and Shapiro (1995), *Science*, 269(5524):650-6

 Recent experimental work downplays importance of mutual inhibition of CI and Cro in lysis-lysogeny decision

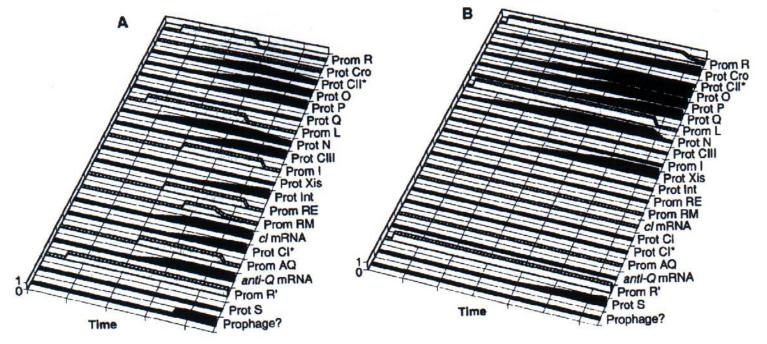
Oppenheim *et al.* (2005), *Annu. Rev. Genet.*, 39:409–29

université Grenoble



Simulation of phage λ infection

• Numerical simulation of promoter activity and protein concentrations in (a) lysogenic and (b) lytic pathways

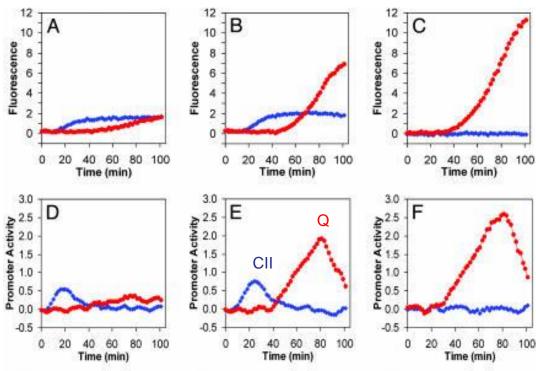


Real-time monitoring of phage λ infection

 New measurement techniques allow real-time and *in-vivo* monitoring of the execution of lytic and lysogenic pathways

Use of fluorescent reporter genes in combination with automated

plate readers



Kobiler *et al.* (2005), *Proc. Natl. Acad. Sci. USA*, 102(12): 4470-5

Other examples of bistability

- Many other examples of bistability exist in bacteria
 - Lactose utilization in *E. coli*
 - Persister cells and antibiotic resistance in *E. coli*
 - Genetic competence in B. subtilis

_ ...

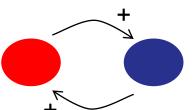
Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564-72

Can we find general **design principles**, relating network structure to bistability and other properties of network dynamics?

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC

Necessary condition for bistability

Necessary condition for bistability, or multistability, is the occurrence of positive feedback loops in the regulatory network
 Thomas and d'Ari (1990), *Biological Feedback*, CRC Press



 Increasingly general mathematical proofs of necessary condition for bistability, or multistability, in regulatory networks

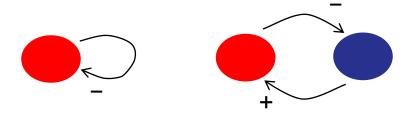
Regulatory interactions (activation/inhibition) lead to non-zero signs (+/-) in Jacobian matrix Soulé (2003), ComPlexUs, 1:123-33

 Condition is not sufficient, as the actual occurrence of bistability depends on parameter values

Necessary condition for oscillations

 Necessary condition for oscillations is the occurrence of negative feedback loops in the regulatory network

Thomas and d'Ari (1990), Biological Feedback, CRC Press

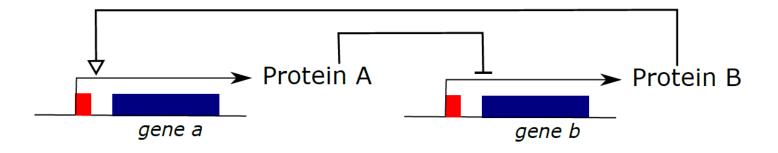


• **Condition is not sufficient**, as the actual occurrence of (stable) oscillations depends on: parameter values, nonlinearities, number of genes, ...

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24

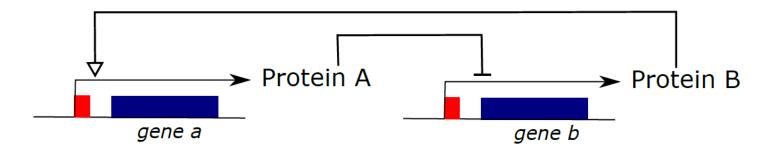
Simple oscillator network

• Question: write out the model for a simple oscillator network



Simple oscillator network

• Question: write out the model for a simple oscillator network

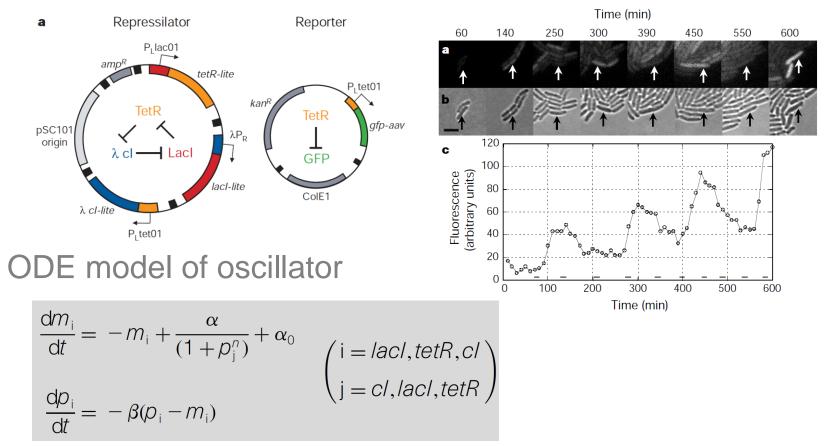


• Question: sketch nullclines in phase space and vector field

Polynikis et al. (2009), J. Theor. Biol., 261:511-530

Construction of oscillator network

Construction of oscillator in vivo: repressilator

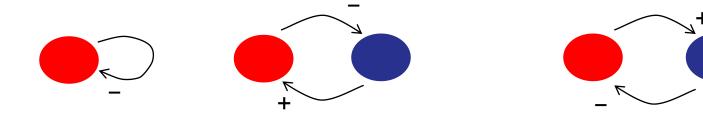


Elowitz and Leibler (2000), Nature, 403(6767):335-8

Necessary condition for oscillations

 Necessary condition for oscillations is the occurrence of negative feedback loops in the regulatory network

Thomas and d'Ari (1990), Biological Feedback, CRC Press



- **Condition is not sufficient**, as the actual occurrence of (stable) oscillations depends on: parameter values, nonlinearities, number of genes, ...
- Combination of negative with positive feedback tends to stabilize oscillations

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24

Conclusions

- Ordinary differential equation (ODE) models describe dynamics of gene regulatory networks in deterministic way
- ODE models provide general formalism for which powerful analysis and simulation techniques exist
- ODE models are based on well-developed theoretical framework and have been applied to many gene regulatory networks
- Difficulties with ODE models:
 - Numerical techniques are often difficult to apply due to lack of quantitative data on model parameters
 - Assumptions of continuous and deterministic change of concentrations may not be valid on molecular level

Merci!

team.inria.fr/ibis