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• IBIS: systems biology group at INRIA/Université Joseph Fourier/CNRS

– Analysis of bacterial regulatory networks by means of models and 

experiments

– Biologists, computer scientists, mathematicians, physicists, …
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http://ibis.inrialpes.fr



Overview

• Part 1. Systems biology and kinetic modeling

• Part 2. Metabolic network modeling

• Part 3. Gene regulatory network modeling

– Quantitative modeling of gene regulatory networks 

– Qualitative modeling of gene regulatory networks 

– Stochastic modeling of gene regulatory networks 

– Practical on integrated models of bacterial growth (Matlab)

• Part 4. Models and data
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Gene regulatory networks

• Focus on subsystems that can be studied in isolation due 

to modular structure of reaction networks

– Time-scale hierarchies

– Connectivity structure
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355

• Gene regulatory networks

– Genes, proteins, and regulatory

interactions

– Reactions involved in 

transcription and translation and 

their regulation

– Time-scale: min (mRNA) to h 

(proteins)



Gene expression
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• Typically, and simplifying quite a bit, gene expression in 

bacteria involves:

– Transcription by RNA polymerase (mRNA)

– Translation by ribosomes (proteins)

– Degradation of mRNA and protein

Biochemical view:



Gene expression
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• Typically, and simplifying quite a bit, gene expression in 

bacteria involves:

– Transcription by RNA polymerase (mRNA)

– Translation by ribosomes (proteins)

– Degradation of mRNA and protein

Simplified view:



Regulation of gene expression
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• Typically, and simplifying quite a bit, regulation of gene 

expression in bacteria involves:

– Transcription regulation by transcription factors

– Translation regulation by small RNAs

– Regulation of degradation by proteases



Gene regulatory networks

• Gene regulatory networks control changes in expression 

levels in response to environmental perturbations
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Original lac operon model

Jacob and Monod (1961), J. Mol. Biol., 3(3):318-56 



Gene regulatory networks

• Gene regulatory networks control changes in expression 

levels in response to environmental perturbations

9

SOS response network in E. coli

Gardner et al. (2011), Science, 301(5629):102-5 



Gene regulatory networks

• Gene regulatory networks control changes in expression 

levels in response to environmental perturbations
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Sporulation and competence

network in B. subtilis

Schultz et al. (1961), Proc. Natl. Acad. Sci. USA, 106(50):21027-34 



Gene regulatory networks

• Gene regulatory networks control changes in expression 

levels in response to environmental perturbations
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Cauleobacter cell cycle network

McAdams and Shapiro (2011), J. Mol. Biol., 409(1):28-35 



Broader view on gene regulatory networks

• Gene regulatory networks control changes in expression levels 

in response to environmental perturbations
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• But: adaptation of gene 

expression leads to changes in 

metabolism which feed back 

into regulatory network

• Indirect regulatory interactions: 

metabolic coupling
Baldazzi et al. (2010), PLoS Comput. 

Biol., 6(6):e1000812



Broader view on gene regulatory networks

• Gene regulatory networks control changes in expression levels 

in response to environmental perturbations
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• But: adaptation of gene 

expression leads to changes in 

metabolism which feed back 

into regulatory network

• Indirect regulatory interactions: 

metabolic coupling

Braznik et al. (2002), Trends Biotechnol., 20(11):467-71



Modeling of gene regulatory networks

• Different modeling formalisms exist, describing gene 

expression on different levels of detail
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Ordinary differential

equations (ODEs)

Stochastic master 

equations
Boolean

networks

coarse-graineddetailed

Smolen et al. (2000), Bull. Math. Biol., 62(2):247-292

Hasty et al. (2001), Nat. Rev. Genet., 2(4):268-279

de Jong (2002), J. Comput. Biol., 9(1): 69-105

Szallassi et al. (2006), System Modeling in Cellular Biology, MIT Press

Bolouri (2008), Computational Modeling of Gene Regulatory Networks, Imperial 

College Press

Karleback and Shamir (2008), Nat. Rev. Mol. Cell Biol., 9(10):770-80 
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Ordinary differential equation models

• Concentration of proteins, mRNAs, and other molecules at 

time-point t represented by continuous variable xi(t)  R0

Concentration on level of (growing) cell population

• Concentration variable defined by dividing amount of 

molecules by volume

de Jong et al. (2017), J. Roy. Soc. Interface, 14(136):20170502

xi(t) = Xi(t)/Vol(t)

Vol(t)
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Ordinary differential equation models

• Concentration of proteins, mRNAs, and other molecules at 

time-point t represented by continuous variable xi(t)  R0

Concentration on level of (growing) cell population

• Regulatory interactions, controlling synthesis and 

degradation, modeled by ordinary differential equations

where x  [x1,…, xn]´and v (x) is rate law

• Kinetic theory of biochemical reactions provides well-

established framework for specification of rate laws

 x  N v (x),  
.dx

dt

Cornish-Bowden (1995), Fundamentals of Enzyme Kinetics, Portland Press

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall
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• ODE model of gene expression, distinguishing transcription

and translation

Modeling of gene regulatory networks

m  m – m m
.

p  p m – p p
.

m(t) ≥ 0, concentration mRNA

p(t) ≥ 0, concentration protein

m, p > 0, synthesis rate constants 

m, p > 0, degradation rate constants
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• ODE model of gene expression, distinguishing transcription

and translation

• Question: write down gene expression model in 

stoichiometric form

Modeling of gene regulatory networks

m  m – m m
.

p  p m – p p
.
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• ODE model of gene expression, collapsing transcription and 

translation

Modeling of gene regulatory networks

p  p – p p
.

p(t) ≥ 0, concentration protein

p > 0, synthesis rate constant 

p > 0, degradation rate constant 
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Modeling of gene regulatory networks

• ODE model of gene expression, taking into account regulation

of transcription

• Regulation function f (x) describes modulation of synthesis rate 

by transcription factor

Generalization to regulation on translational and proteolytic level

x

m  m f (x)– m m
.

p  p m – p p
.
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Modeling of gene regulatory networks

• ODE model of gene expression, taking into account regulation

of transcription

• Regulation function f (x) typically has sigmoidal form, due to 

cooperative nature of regulation

f (x) = ,   > 0 threshold,


n


n

+ x
n

x

f (x)

0

1

n > 1 cooperativity

x

m  m f (x)– m m
.

p  p m – p p
.
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Modeling of gene regulatory networks

• ODE model of gene expression, taking into account regulation

of transcription

• Regulation function f (x) typically has sigmoidal form, 

accounting for cooperative nature of regulation

• Implicit modeling assumptions:

– Ignore gene expression machinery (RNA polymerase, ribosome)

– Simplification of complex protein-DNA interactions to response function

– No effect of growth dilution

x

m  m f (x)– m m
.

p  p m – p p
.



Modeling of gene regulatory networks

• ODE model of gene expression, taking into account regulation

of transcription

• Gene regulatory network has many genes with mutual 

regulatory interactions: model of coupled ODEs

x

m  m f (x)– m m
.

p  p m – p p
.
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Analysis and numerical simulation

• No analytical solution for most nonlinear differential equations

• Dynamic systems theory provides techniques for analysis of 

nonlinear differential equations, but usually not scalable

– Phase portrait

– Bifurcation analysis

• Approximation of solution obtained by numerical simulation, 

given parameter values and initial conditions x(0)  x0

Kaplan and Glass (1995), Understanding Nonlinear

Dynamics, New York

Lambert (1991), Numerical Methods

for Ordinary Differential Equations, Wileyt

x

0

f (x) dt

t

t + t

x (t + t )  x (t)  x (t)  f (x) t
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• Cross-inhibition network consists of two genes, each coding

for transcription regulator inhibiting expression of other gene

• Cross-inhibition network is example of positive feedback, 

important for phenotypic differentiation (multi-stability) 

Cross-inhibition network

Thomas and d’Ari (1990), Biological Feedback, CRC Press
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ODE model of cross-inhibition network

f (x) = ,   > 0 threshold,


n


n

+ x
n

x

f (x)

0

1

n > 1 cooperativity

xa  a f (xb) – a xa

.

xb  b f (xa) – b xb
.

xa(t) ≥ 0, concentration protein A 

xb(t) ≥ 0, concentration protein B 

a , b > 0, synthesis rate constants 

a , b > 0, degradation rate constants 
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Bistability of cross-inhibition network

• Analysis of steady states in phase plane 

• System is bistable: two stable and one unstable steady state.

• For almost all initial conditions, system will converge to one of 

two stable steady states (differentiation)

• System returns to steady state after small perturbation

xb

xa

0

xa = 0
.

xa  0  xa  (a / a) f (xb)
.

xb  0  xb  (b / b) f (xa)
.

xb = 0
.



Hysteresis in cross-inhibition network

• Transient perturbation may cause irreversible switch from one 

steady state to another (hysteresis)

Modulation of regulatory effect of one of regulators (α)

• Change in parameter causes saddle-note bifurcation
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xb

xa

0 xb

xa

0

α 1 α  0

xa  a f (αxb) – a xa

.

xb  b f (xa) – b xb

.

xa = 0
.

xb = 0
.

xa = 0
.

xb = 0
.
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Construction of cross inhibition network

• Construction of cross inhibition network in vivo

• ODE model of network

u =                      – u
1 + v β

α1 v =                      – v
1 + u
α2..

Gardner et al. (2000), Nature, 403(6786): 339-42
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Experimental test of model

• Experimental test of mathematical model (bistability and 

hysteresis) Gardner et al. (2000), Nature, 403(6786): 339-42
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Bacteriophage  infection of E. coli

• Response of E. coli to phage 

infection involves decision between

alternative developmental pathways:   

lysis and lysogeny
Ptashne, A Genetic Switch, Cell Press,1992
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Bacteriophage  infection of E. coli

• Response of E. coli to phage 

infection involves decision between

alternative developmental pathways:   

lysis and lysogeny
Ptashne, A Genetic Switch, Cell Press,1992
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Bistability in phage 
• Lytic and lysogenic pathways involve different patterns of 

gene expression

Ptashne, A Genetic Switch, Cell Press,1992
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Control of phage  fate decision

• Cross-inhibition feedback plays key role in establishment of 

lysis or lysogeny, as well as in induction of lysis after DNA 

damage

Santillán and Mackey (2004), Biophys. J., 86(1):75-84
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Simple model of phage  fate decision

• Differential equation model of cross-inhibition feedback 

network involved in phage  fate decision

mRNA and protein, delays, thermodynamic description of gene

regulation

Santillán and Mackey (2004), Biophys. J., 86(1):75-84
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Analysis of phage  model

• Bistability (lysis and lysogeny) only occurs for certain 

parameter values

• Switch from lysogeny to lysis involves bifurcation from one 

monostable regime to another, due to change in degradation 

constant

Santillán and Mackey (2004), Biophys. J., 86(1):75-84
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Extended model of phage  infection

• ODE model of the extended network underlying decision

between lysis and lysogeny

Role of other regulatory proteins (CII, N, Q, …)

McAdams and Shapiro (1995), Science, 

269(5524):650-6

• Recent experimental

work downplays

importance of mutual

inhibition of CI and Cro

in lysis-lysogeny

decision

Oppenheim et al. (2005), Annu. Rev. Genet., 

39:409–29
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Simulation of phage  infection

• Numerical simulation of promoter activity and protein

concentrations in (a) lysogenic and (b) lytic pathways

• Cell follows one of two pathways for different initial 

conditions



Real-time monitoring of phage  infection 

• New measurement techniques allow real-time and in-vivo 

monitoring of the execution of lytic and lysogenic pathways

Use of fluorescent reporter genes in combination with automated

plate readers

39

Q

CII

Kobiler et al. (2005), Proc. Natl. Acad. 

Sci. USA, 102(12): 4470-5
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Other examples of bistability

• Many other examples of bistability exist in bacteria

– Lactose utilization in E. coli

– Persister cells and antibiotic resistance in E. coli

– Genetic competence in B. subtilis

– …

• Can we find general design principles, relating network 

structure to bistability and other properties of network 

dynamics?

Dubnau and Losick (2006), Mol. Microbiol., 61 (3):564–72

Alon (2007), An Introduction to Systems Biology, Chapmann&Hall/CRC
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Necessary condition for bistability

• Necessary condition for bistability, or multistability, is the 

occurrence of positive feedback loops in the regulatory

network

• Increasingly general mathematical proofs of necessary

condition for bistability, or multistability, in regulatory

networks

Regulatory interactions (activation/inhibition) lead to non-zero signs

(+/-) in Jacobian matrix

• Condition is not sufficient, as the actual occurrence of 

bistability depends on parameter values

Thomas and d’Ari (1990), Biological Feedback, CRC Press

+

+

+

−

−

Soulé (2003), ComPlexUs, 1:123-33



Necessary condition for oscillations

• Necessary condition for oscillations is the occurrence of 

negative feedback loops in the regulatory network

• Condition is not sufficient, as the actual occurrence of 

(stable) oscillations depends on: parameter values, 

nonlinearities, number of genes, …
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Thomas and d’Ari (1990), Biological Feedback, CRC Press

−

+−

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24 



Simple oscillator network

• Question: write out the model for a simple oscillator network



Simple oscillator network

• Question: write out the model for a simple oscillator network

• Question: sketch nullclines in phase space and vector field

Polynikis et al. (2009), J. Theor. Biol., 261:511-530



Construction of oscillator network

• Construction of oscillator in vivo: repressilator

• ODE model of oscillator
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Elowitz and Leibler (2000), Nature, 403(6767):335-8 



Necessary condition for oscillations

• Necessary condition for oscillations is the occurrence of 

negative feedback loops in the regulatory network

• Condition is not sufficient, as the actual occurrence of 

(stable) oscillations depends on: parameter values, 

nonlinearities, number of genes, …

• Combination of negative with positive feedback tends to 

stabilize oscillations
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Thomas and d’Ari (1990), Biological Feedback, CRC Press

+−

+−
− +

Purcell et al. (2010), J. R. Soc. Interface, 7(52):1503-24 
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Conclusions

• Ordinary differential equation (ODE) models describe 

dynamics of gene regulatory networks in deterministic way

• ODE models provide general formalism for which powerful 

analysis and simulation techniques exist

• ODE models are based on well-developed theoretical 

framework and have been applied to many gene regulatory 

networks

• Difficulties with ODE models:

– Numerical techniques are often difficult to apply due to lack of 

quantitative data on model parameters 

– Assumptions of continuous and deterministic change of 

concentrations may not be valid on molecular level



Merci !

team.inria.fr/ibis


