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Constraint-based reconstruction and analysis (COBRA) methods at the genome scale have been
under development since the first whole-genome sequences appeared in the mid-1990s. A few
years ago, this approach began to demonstrate the ability to predict a range of cellular functions,
including cellular growth capabilities on various substrates and the effect of gene knockouts at the
genome scale. Thus, much interest has developed in understanding and applying thesemethods to
areas such asmetabolic engineering, antibiotic design, and organismal and enzyme evolution. This
Primer will get you started.
Introduction
Bottom-up approaches to systems biology rely on constructing

a mechanistic basis for the biochemical and genetic processes

that underlie cellular functions. Genome-scale network recon-

structions of metabolism are built from all known metabolic

reactions and metabolic genes in a target organism. Networks

are constructed based on genome annotation, biochemical

characterization, and the published scientific literature on the

target organism; the latter is sometimes referred to as the bib-

liome. DNA sequence assembly provides a useful analogy to

the process of network reconstruction (Figure 1). The genome

of an organism is systematically assembled from many short

DNA stubs, called reads, using sophisticated computer algo-

rithms. Similarly, the reactome of a cell is assembled, or recon-

structed, from all the biochemical reactions known or predicted

to be present in the target microorganism. Importantly, network

reconstruction includes an explicit genetic basis for each

biochemical reaction in the reactome as well as information

about the genomic location of the gene. Thus, reconstructed

networks, or an assembled reactome, for a target organism

represent biochemically, genetically, and genomically structured

knowledge bases, or BiGG k-bases. Network reconstructions

have different biological scope and coverage. They may

describe metabolism, protein-protein interactions, regulation,

signaling, and other cellular processes, but they have a unifying

aspect: an embedded, standardized biochemical and genetic

representation amenable to computational analysis.

A network reconstruction can be converted into a mathemat-

ical format and thus lend itself to mathematical analysis and

computational treatment. Genome-scale models, called GEMs,

have been under development for nearly 15 years and have

now reached a high level of sophistication. The first GEM
was created for Haemophilus influenza and appeared shortly

after this first genome was sequenced (Edwards and Palsson,

1999), and GEMs have now grown to the level where they

enable predictive biology (Bordbar et al., 2014; McCloskey

et al., 2013; Oberhardt et al., 2009). Here, we will focus on recon-

structions of metabolism and the process of converting them

into GEMs to produce computational predictions of biological

functions.

The fundamentals of the constraints-based reconstruction

and analysis (COBRA) approach and its uses are also described

in this Primer, which lays out the constraint-based methodology

at four levels. First, there is a textual description of the methods

and their applications. Second, visualization is presented in

the form of detailed figures to succinctly convey the key con-

cepts and applications. Third, the figure captions contain more

detailed information about the computational approaches

illustrated in the figures. Fourth, the Primer provides a table of

selected detailed resources to enable an in-depth review for

the keenly interested reader. The text is organized into six sec-

tions, each addressing a grand challenge in today’s world of

‘‘big data’’ biology.

1. Network Reconstructions Assemble Knowledge
Systematically
There is a large library of scientific publications that describe

different model organisms’ specific molecular features. Molecu-

lar biology’s focus on knowing much about a limited number of

molecular events changed once annotated genome sequences

became available, leading to the emergence of a genome-scale

point of view. Now, putting all available knowledge about the

molecular processes of a target organism in context and linking

it to its genome sequence has emerged as a grand challenge.
Cell 161, May 21, 2015 ª2015 Elsevier Inc. 971

mailto:palsson@ucsd.edu
http://dx.doi.org/10.1016/j.cell.2015.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2015.05.019&domain=pdf


Figure 1. Network Reconstruction
An organism’s reactome can be assembled in
a way that is analogous to DNA-sequencing
assembly. (Right to left) First the interacting com-
pounds must be identified. Then, the reactions
acting on these compounds are tabulated and
the protein that catalyzes the reaction and the
corresponding open reading frame is identified
in the organism of interest. These reactions are
assembled into pathways that can be laid out
graphically to visualize a cell’s metabolic map at
the genome scale. Several tools for reactome
assembly and curation exist, including the COBRA
Toolbox (Ebrahim et al., 2013; Schellenberger
et al., 2011b), KEGG (Kanehisa et al., 2014),
EcoCyc (Keseler et al., 2013), ModelSeed (Henry
et al., 2010b), BiGG (Schellenberger et al., 2010),
Rbionet (Thorleifsson and Thiele, 2011), Subliminal
(Swainston et al., 2011), Raven toolbox (Agren
et al., 2013), and others.
Genome-scale network reconstructions were a response to this

challenge.

Network Reconstructions Organize Knowledge

into a Structured Format

The reconstruction process treats individual reactions as the

basic elements of a network, somewhat similar to a base pair be-

ing the smallest element in an assembled DNA sequence

(Figure 1). To implement the metabolic reconstruction process,

a series of questions needs to be answered for each of the en-

zymes in a metabolic network. (1) What are the substrates and

products? (2) What are the stoichiometric coefficients for each

metabolite that participates in the reaction (or reactions) cata-

lyzed by an enzyme? (3) Are these reactions reversible? (4) In

what cellular compartment does the reaction occur? (5) What

gene(s) encode for the protein (or protein complex), and what

is (are) their genomic location(s)? Genes are linked to the pro-

teins they encode and the reactions they catalyze using the

gene-protein-reaction relationship (GPR). All of this information

is assembled from a range of sources, including organism-spe-

cific databases, high-throughput data, and primary literature.

Establishing a set of the biochemical reactions that constitute

a reaction network in the target organism culminates in a data-

base of chemical equations. Reactions are then organized

into pathways, pathways into sectors (such as amino acid syn-

thesis), and ultimately into genome-scale networks, akin to reads

becoming a full DNA sequence. This process has been

described in the form of a 96-step standard operating procedure

(Thiele and Palsson, 2010).

Today, after many years of hard work by many researchers,

there exist collections of genome-scale reconstructions (some-

times called GENREs) for a number of target organisms (Monk

et al., 2014; Oberhardt et al., 2011), and established protocols

for reconstruction exist (Thiele and Palsson, 2010) that can be

partially automated (Agren et al., 2013; Henry et al., 2010a).
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Recapitulation

Network reconstructions represent an

organized process for genome-scale as-

sembly of disparate information about a

target organism. All of this information is
put into context with the annotated genome to form a coherent

whole that, through computations, is able to recapitulate

whole-cell functions. The grand challenge of disparate data inte-

gration into a coherent whole is achieved through the formulation

of a GEM. A GEM can then compute cellular states such as an

optimal growth state. This process is further explored in the

next section. A detailed reading list is available in Table S1 on

the network reconstruction process and software tools used to

facilitate it.

2. Converting a Genome-scale Reconstruction
to a Computational Model
Before a reconstruction can be used to compute network prop-

erties, a subtle but crucial step must be taken in which a network

reconstruction is mathematically represented. This conversion

translates a reconstructed network into a chemically accurate

mathematical format that becomes the basis for a genome-scale

model. This conversion requires the mathematical representa-

tion of metabolic reactions. The core feature of this representa-

tion is tabulation, in the form of a numerical matrix, of the

stoichiometric coefficients of each reaction (Figure 2A). These

stoichiometries impose systemic constraints on the possible

flow patterns (called a flux map, or flux distribution) of metabo-

lites through the network. These concepts are detailed below.

Imposition of constraints on network functions fundamentally

differentiates the COBRA approach from models described by

biophysical equations, which require many difficult-to-measure

kinetic parameters.

Constraints are mathematically represented as equations that

represent balances or as inequalities that impose bounds

(Figure 2B). The matrix of stoichiometries imposes flux balance

constraints on the network, ensuring that the total amount of

any compound being produced must be equal to the total

amount being consumed at steady state. Every reaction can



Figure 2. Formulation of a Computational Model
(A) After the metabolic network has been assembled, it must be converted into
a mathematical representation. This conversion is performed using a stoi-
chiometric (S) matrix in which the stoichiometry of each metabolite involved in
a reaction is enumerated. Reactions form the columns of this matrix and
metabolites the rows. Each metabolite’s entry corresponds to its stoichio-
metric coefficient in the corresponding reaction. Negative coefficient sub-
strates are consumed (reactants), and positive coefficients are produced
(products). Converting a metabolic network reconstruction to a mathematical
formulation can be achieved with several of the toolboxes listed in Table S1.
also be given upper and lower bounds, which define the

maximum and minimum allowable fluxes through the reactions

that, in turn, are related to the turnover number of the enzyme

and its abundance. Once imposed on a network reconstruction,

these balances and bounds define a space of allowable flux dis-

tributions in a network—the possible rates at which everymetab-

olite is consumed or produced by every reaction in the network.

The flux vector, a mathematical object, is a list of all such flux

values for a single point in the space. The flux vector represents

a ‘‘state’’ of the network that is directly related to the physiolog-

ical function that the network produces. Many other constraints

such as substrate uptake rates, secretion rates, and other limits

on reaction flux can also be imposed, further restricting the

possible state that a reconstructed network can take (Reed,

2012). The computed network states that are consistent with

all imposed constraints are thus candidate physiological states

of the target organisms under the conditions considered. The

study of the properties of this space thus becomes an important

subject.

Flux Balance Analysis Calculates Candidate Phenotypes

Flux balance analysis (FBA) is the oldest COBRA method. It is a

mathematical approach for analyzing the flow of metabolites

through a metabolic network (Orth et al., 2010). This approach

relies on an assumption of steady-state growth and mass

balance (all mass that enters the system must leave). The con-

straints discussed above take the form of equalities and inequal-

ities to define a polytope (blue area within the illustration in

Figure 2B) that represents all possible flux states of the network

given the constraints imposed. Thus, many network states are

possible under the given constraints, andmultiple solutions exist

that satisfy the governing equations. The blue area is therefore

often called the ‘‘solution space’’ to denote a mathematical

space that is filled with candidate solutions to the network
(B) Constraints can be added to the model, such as: (1) enforcement of mass
balance and (2) reaction flux (v) bounds. The blue polytope represents different
possible fluxes for reactions 5 and 6, consistent with stated constraints.
Those outside of the polytope violate the imposed constraints and are thus
‘‘infeasible.’’
(C) Constraint-based models predict the flow of metabolites through a defined
network. The predicted path is determined using linear programming solvers
and is termed flux balance analysis (FBA). FBA can be used to calculate
the optimal flow of metabolites from a network input to a network output. The
desired output is described by an objective function. If the objective is to
optimize flux through reaction 5, the optimal flux distribution would correspond
to the levels of flux 5 and flux 6 at the blue point circled in the figure. The
objective function can be a simple value or can draw on a combination of
outputs, such as the biomass objective shown in (E). It is important to note that
alternate optimal flux distributions may exist to reach the optimal state, as
discussed in Figure 4C.
(D) Once a network reconstruction is converted to a mathematical format,
the inputs to the system must be defined by adding consideration of the
extracellular environment. Compounds enter and exit the extracellular
environment via ‘‘exchange’’ reactions. The GEM will not be able to import
compounds unless a transport reaction from the external environment to the
inside of the cell is present.
(E) In addition to exchange reactions, the biomass objective function acts as a
drain on cellular components in the same ratios as they are experimentally
measured in the biomass. In FBA simulations, the biomass function is used to
simulate cellular growth. The biomass function is composed of all necessary
compounds needed to create a new cell, including DNA, amino acids, lipids,
and polysaccharides. This is not the only physiological objective that can be
examined using COBRA tools.
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equations given the governing constraints. FBA uses the

stated objective to find the solution(s) that optimize the

objective function. The solution is found using linear program-

ming, and, as indicated in Figure 2C, the optimal solution lies

at the edges of the solution space impinging up against govern-

ing constrains.

The utility of FBA has been increasingly recognized due to its

simplicity and extensibility: it requires only the information on

metabolic reaction stoichiometry and mass balances around

the metabolites under pseudo-steady state assumption. It com-

putes how the flux map must balance to achieve a particular

homeostatic state. However, FBA has limitations. It balances

fluxes but cannot predict metabolite concentrations. Except

in some modified forms, FBA does not account for regulatory

effects such as activation of enzymes by protein kinases or

regulation of gene expression. More details are found in the

caption of Figure 2, and computational resources are summa-

rized below that can be deployed to find the optimal state and

to study its characteristics.

Models Impose Constraints and Allow Prediction

One of the most basic constraints imposed on genome-scale

models of metabolism is that of substrate, or nutrient, availability

and its uptake rate (Figure 2D). Metabolites enter and leave the

systems through what are termed ‘‘exchange reactions’’ (i.e.,

active or passive transport mechanisms). These reactions define

the extracellular nutritional environment and are either left

‘‘open’’ (to allow a substrate to enter the system at a specified

rate) or ‘‘closed’’ (the substrate can only leave the system).

Measurements of the rate of exchange with the environment

are relatively easy to perform, and they prove to be some of

the more important constraints placed on the possible functions

of reaction networks internal to the cell. More biological- and

data-derived constraints can also be imposed on amodel. These

advanced constraints are detailed in sections 4, 5 and 6.

The next step in converting a network reconstruction to a

model is to define what biological function(s) the network can

achieve. Mathematically, such a statement takes the form of

an ‘‘objective function.’’ For predicting growth, the objective is

biomass production—that is, the rate at which the network can

convert metabolites into all required biomass constituents

such as nucleic acids, proteins, and lipids needed to produce

biomass. The objective of biomass production is mathematically

represented by a ‘‘biomass reaction’’ that becomes an extra

column of coefficients in the stoichiometric matrix. One can

formulate a biomass objective function at an increasing level of

detail: basic, intermediate, and advanced (Feist and Palsson,

2010; Monk et al., 2014). The biomass reaction is scaled so

that the flux through it represents the growth rate (m) of the target

organism.

It is important to note that the biomass objective function is

determined from measurements of biomass composition—the

uptake and secretion rates from measuring the nutrients in the

medium—and that the model formulation is built on a knowl-

edge-based network reconstruction. Thus, the growth rate

optimization problem represents ‘‘big data’’ integrated into a

structured format and the hypothesis of a biological objective:

grow as fast as possible with the resources available. This is a

well-defined optimization problem.
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GEMs Are Input-Output ‘‘Flow Models’’

The inner workings of a GEM are readily understood conceptu-

ally. In a given environment (i.e., where the nutritional inputs

are defined) GEMs can be used to compute network outputs.

FBA can computationally trace a fully balanced path through

the reactome from the available nutrients to the prerequisite

output metabolite. Such calculations are performed with an

objective function that describes the removal of the target

metabolite from the network. The synthesis of biomass in a cell

requires the simultaneous removal of about 60–70 different me-

tabolites. Using FBA, a GEM can also compute the balanced use

of the reactome to produce all of the prerequisite metabolites for

growth simultaneously and does so in the correct relative

amounts while accounting for all of the energetic, redox, and

chemical interactions that must balance to enable such biomass

synthesis. This exercise is one of genome-scale accounting of all

molecules flowing through the reactome.

Recapitulation

Given its simplicity and utility, FBA has become one of the most

widely employed computational techniques for the systems-

level analysis of living organisms (Bordbar et al., 2014; Lewis

et al., 2012). It has been successfully applied to a multitude of

species for modeling their cellular metabolisms (Feist and Pals-

son, 2008; McCloskey et al., 2013; Oberhardt et al., 2009) and

therefore enabled a variety of applications such as metabolic

engineering for the over-production of biochemicals (Yim et al.,

2011; Adkins et al., 2012), identification of anti-microbial

drug targets (Kim et al., 2011), and the elucidation of cell-cell

interactions (Bordbar et al., 2010). Further reading and detailed

descriptions of FBA and sources for existing genome-scale

models are available in Table S1.

3. Validation and Reconciliation of Qualitative
Model Predictions
Ensuring the consistency and accuracy of all of the information

available for a target organism is a grand challenge of

genome-scale biology. Since model predictions are based on

a network reconstruction that represents the totality of what is

known about a target organism, such predictions are a critical

test of our comprehensive understanding of the metabolism for

the target organism. Incorrect model predictions can be used

for biological discovery by classifying them and understanding

their underlying causes. Performing targeted experiments to

understand failed predictions is a proven method for systematic

discovery of new biochemical knowledge (Orth and Palsson,

2010b). This section will focus on evaluating qualitative model

predictions, their outcomes, underlying causes of incorrect

predictions, and how to go about correcting them. Section 4

discusses the same process for quantitative model predictions.

Genetic and Environmental Parameters

Genome-scale models have many genetic and environmental

parameters that can be experimentally varied. Altering the

composition of the growth media changes environmental pa-

rameters. Alteration of genetic parameters is achieved through

genome editing methods. Both environmental and genetic pa-

rameters are explicit in GEMs, and thus the consequence of

both types of perturbations can be computed, predicted, and

analyzed. The scale of such predictions has grown steadily since



the first genome-scale model of E. coli appeared in 2000 (Ed-

wards and Palsson, 2000).

Genome-scale gene essentiality data are available from

specific projects or organism-specific databases. One can sys-

tematically remove genes from a reconstruction and thus the

corresponding reactions from the reactome and then repeat

the growth computation to predict gene essentiality; if a growth

state cannot be computed without a particular gene, the GEM

predicts it to be essential (Figure 3A). Such growth rate predic-

tions of gene deletion strains have gone from 100 predictions

in the year 2000 (Edwards and Palsson, 2000) to more than

100,000 in 2013 (Österlund et al., 2013) and may be heading

for more than one million predictions in just a few years (Monk

and Palsson, 2014).

Both environmental and genetic parameters can be varied

when performing FBA. The simplicity of computing growth states

(i.e., an output) as a function of media composition (i.e., the nutri-

tional inputs) with the selective removal of genes (Figure 3B) has

led to a number of studies that cross environmental parameters

with gene deletions. The explicit relationship between a gene

and a reaction makes the deletion of genes and their encoding

reactions straightforward. You can readily do this for your target

organism, provided that you can construct a library of gene dele-

tion strains. Improved molecular tools for generating knockout

collection libraries (Tn-seq, CRISPR systems, etc.) and improved

high-throughput methods for measuring knockout phenotypes

have enabled a massive scale-up in the number of phenotypes

that can be measured.

Classification of Model Predictions

Computational predictions of outcomes fall into four categories:

true positives, true negatives, false positives, and false nega-

tives. The true-positive and true-negative predictions, in which

computational predictions and experimental outcomes agree,

have generally exceeded 80%–90% for well-characterized

target organisms. Going beyond single-gene knockouts to

double-gene knockouts and more, true-negative predictions

are particularly significant, as they indicate model predictions

of true genetic, or epistatic, interactions. In a screen of double-

gene yeast knockouts, Szappanos et al. found that models could

predict 2.8% of negative genetic interactions (Szappanos et al.,

2011). While this indicates poor recall of prediction, of these,

50% were correct, indicating that model predictions are highly

precise but may miss several interactions. These missed predic-

tions represent cases that are currently difficult for functional

geneticists to understand. For applications where the goal is to

have true predictions, such as for antibiotic design, precision is

more important than recall.

FBA-based models are highly precise because they are

good at predicting impossible states (such as when a gene

knockout leads to death). This assumes that the network struc-

ture is complete, an assumption that can be a problem when

promiscuous enzyme activity arises, leading to a reaction with

an encoding gene that is not captured in the model. Models

have lower accuracy because FBA assumes that all reactions

can happen at maximum rates. Model false positives often

occur because an enzyme is either transcriptionally repressed

or does not catalyze the designated reaction at a high enough

rate (Table S2). Predictive failure is perhaps of more interest
than success, as it represents an opportunity for biological dis-

covery. False-negative predictions occur when a GEM predicts

the inability to grow in a given environment without the deleted

gene, but the experiments show growth. This discrepancy indi-

cates that the reconstructed reactome is incomplete. In contrast,

false-positive predictions occur when a GEM predicts growth

but the experiment results in no growth. This outcome indicates

possible errors in the knowledge on which the reactome was

based or that a regulatory process is missing that prevents the

use of a gene product factored in the computed solution.

An example would be regulation that either represses gene

expression or a metabolite-enzyme interaction that inhibits the

function of an enzyme that the GEM used to compute the pre-

dicted growth state.

Prediction failures can be used to systematically (i.e., algorith-

mically) generate hypotheses addressing the failures. Such

hypotheses have been shown to direct experimentation to

improve our knowledge base for the target organism. Computa-

tions that vary environmental and genetic parameters become

part of a workflow (Figure 3C). The outcome of the workflow is

a set of qualitative model predictions of growth or no growth

that are then compared to the experimental outcome of a growth

screen. Correct predictions align with experimental results,

while incorrect predictions do not. The two are then compared

and classified into four categories, as shown in Figure 3C. The

failure modes lead to systematic experimentation.

Discovery Using Model False Negatives

Reconciling such discrepancies between predicted and

observed growth states is now a proven approach for biological

discovery. A series of algorithms have been developed that have

been shown to compute the most likely reasons for failure of

prediction that, in turn, led to a model-guided experimental

inquiry and discovery. Furthermore, high-throughput tools

such as phenotypic microarrays and robotic instruments are

becoming available to screen cells at high rates. Such discov-

eries are then incorporated into the reconstruction, leading to

its iterative improvement.

The discrepancies between GEM predictions and experi-

mental data have been used to design targeted experiments

that correct inaccuracies in metabolic knowledge. In this

subsection, we provide three illustrative examples that detail

how reconciliation of model errors led to the discovery of new

metabolic capabilities in three model organisms (Figure 3D).

Human. The activity of open reading frame 103 on chromo-

some 9 (C9orf103) of the human genome was discovered

(Rolfsson et al., 2011a) using established gap-filling protocols

(Orth and Palsson, 2010b; Reed et al., 2006). The authors

focused on unconnected, ‘‘dead-end’’ metabolites in the human

metabolic network reconstruction, Recon 1 (Duarte et al., 2007).

Dead-end metabolites lead to model errors by creating blocked

reactions due to a violation of mass balance. Any flux leading

to them cannot leave the network. In an attempt to connect

these dead-end metabolites, a universal database of metabolic

reactions was used to predict the fewest reactions required

to fully connect all metabolites in the network. Focusing on

gluconate, which is a disconnected metabolite, the authors

experimentally characterized C9orf103, previously identified as

a candidate tumor suppressor gene, as the gene that encodes
Cell 161, May 21, 2015 ª2015 Elsevier Inc. 975



Figure 3. Using Models for Qualitative Predictions and Iterative Improvement
(A) Each reaction in the network is linked to a protein and encoding gene through the gene-protein-reaction (GPR) relationship. Because each reaction in the
network corresponds to a column in the stoichiometric matrix, simply removing the column association with a particular reaction can simulate gene knockouts.
Thus, multiple KO simulations can be performed. For example, it is easy to delete every pairwise combination of 136 central carbonmetabolic E. coli genes to find
double-gene knockouts that are essential for survival of the bacteria.
(B) The simplicity of altering inputs to change cellular growth environments and removing genes in silico allows one to perform simulations in millions of
experimental conditions quickly. Even on a modest laptop computer, a single FBA calculation runs in a fraction of a second, thus simulating the effect of all gene
knockouts in E. coli central metabolism in less than 10 s.
(C) Incorrect model predictions are an opportunity for biological discovery because they highlight where knowledge is missing. Targeted experiments can
be performed to discover new content that can then be added back to a model to improve its predictive accuracy. Missing model content can be discovered
using automated approaches known as ‘‘gap filling’’ (Orth and Palsson, 2010a) that query a universal database of potential reactions to restore in silico growth
to a model.

(legend continued on next page)
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gluconokinase, thereby consuming this metabolite and connect-

ing it to the rest of the human metabolic network.

E. coli. Gap-filling methods combined with systematic gene

knockouts in E. coli (Nakahigashi et al., 2009b) were used to

discover new metabolic functions for the classic glycolytic en-

zymes phosphofructokinase and aldolase. Single-, double-,

and triple-knockout strains of central metabolic genes were

grown on 13 different carbon sources. Concurrently, the same

gene knockouts and growth conditions were simulated using

the E. coli GEM. Several discrepancies between model predic-

tions and experimental results were related to talAB interactions

in the pentose phosphate pathway and could not be reconciled.

A metabolomic analysis identified a new metabolite, sedoheptu-

lose-1,7-bisphosphate, that had not been previously character-

ized. Using metabolic flux analysis and in vitro enzyme assays,

the investigators confirmed that phosphofructokinase carries

out the reaction and that glycolytic aldolase can split the

seven-carbon sugar into three- and four-carbon sugars, glycer-

aldehyde-3-phosphate (G3P) and D-erythrose 4-phosphate

(E4P), respectively.

Yeast. An analysis of synthetic lethal screens and gap-filling

methods was used to correct incorrect pathways leading to

NAD+ synthesis in yeast (Szappanos et al., 2011). The study

compared an experimental set of genetic interactions for

metabolic genes against interactions that were predicted by

FBA. Using machine-learning techniques, key changes to the

metabolic network that improved model accuracy were identi-

fied. Model refinement identified one of the two NAD+ biosyn-

thetic pathways from amino acids in the GEM as a source of

inaccurate predictions. Using growth screens with mutant

strains, the authors validated that the synthesis of NAD+ from

amino acids was only possible from L-tryptophan (L-trp), but

not from L-aspartate (L-asp).

Adaptive Laboratory Evolution in the Discovery Process

In contrast to false negatives, false positives arise when the

model predicts growth, but experiments show no growth

(Figure 3E). False positives occur in cases in which experimental

data show a particular gene to be essential but model simula-

tions do not. Metabolic models can be used to predict efficient

compensatory pathways, after which cloning and overexpres-

sion of these pathways are performed to investigate whether

they restore growth and to help determine why these compensa-

tory pathways are not active in mutant cells.

Discovering Context-Specific Regulatory Interactions Using

False-Positive Predictions. Cloning and overexpression of a

false-positive associated gene has been demonstrated for a

ppc knockout of Salmonella enterica serovar Typhimurium

(Fong et al., 2013). A metabolic model of S. Typhimurium pre-
(D) Gap-filling approaches have been used to discover new metabolic reactions
enzymes, phosphofructokinase (PFK) and fructose-bisphosphate aldolase (FBA
(EC 2.7.1.12) activity was discovered based on the known presence of the metab
2011b) (red). Yeast: Automated model refinement suggested modifications in the
from aspartate thought to exist in yeast was not present (Szappanos et al., 2011
(E) False-positive predictions can be reconciled by adding regulatory rules derive
was able to reconcile 2,442 false-model predictions from the E. coli GEM by up
positive growth inconsistency in the metabolic model of S. Typhimurium was rec
repression of aceA encoding isocitrate lyase. Transcriptional repression can al
experimental phenotypes to achieve model predictions. Several experimental stu
optimal growth state (Ibarra et al., 2002).
dicted that the cells could route flux through the glyoxylate shunt

when ppc is removed due to the backup function of isocitrate

lyase encoded by aceA. However, theDppc cells were nonviable

experimentally. The protein IclR is a transcription factor that

regulates the transcription of genes involved in the glyoxylate

shunt, including aceA. Therefore a dual-knockout DppcDiclR

mutant was constructed. Growth was restored in this double

mutant at �60% of the wild-type growth rate. Therefore, the

prediction of the metabolic model of S. Typhimurium failed

because it erroneously allowed flux through the glyoxylate

shunt when ppc was deleted due to the absence of regulatory

information in the model.

Adaptive laboratory evolution can also be used to reconcile

false-positive predictions. Often, cell populations may need

time to adapt to a genetic change or shift in media conditions,

giving them the appearance of slow or no growth despite a

model prediction of growth. However, it has been shown that

incorrect predictions of in silico models based on optimal per-

formance criteria may be incorrect due to incomplete adaptive

laboratory evolution under the conditions examined. It has been

shown that E. coli K-12 grown on glycerol over 40 days

(or about 700 generations) and subjected to a growth rate

selection pressure (passing a small fraction of the fastest

growers) achieves a final growth rate that is predicted by the

GEM (Ibarra et al., 2002). The quantitative prediction of growth

rates is discussed in section 4. Thus, a false-positive result may

indicate that the model is in fact correct, and a researcher

should be patient while the cell adapts to achieve the model-

predicted growth.

Recapitulation

Given that our knowledge of any target organism is incomplete,

its network reconstruction will also be incomplete. Thus, failures

in GEM prediction of qualitative outcomes of growth capability

are informative about the completeness of a network reconstruc-

tion and the consistency of its content. Furthermore, these

approaches can be extended beyond model improvement. As

genome editing techniques improve, in silico prediction of the

effect of multiple gene knockouts will be vital for contextualizing

results of knockout studies and engineering genomes to achieve

a desired phenotype (Campodonico et al., 2014). Additionally,

reconciliation of model false negatives has been used to explore

the role that underground metabolism plays in adapting to

alternate nutrient environments (Notebaart et al., 2014). The

algorithmic procedures that have been developed to address

failure of prediction have led to some computer-generated

hypotheses resulting in productive experimental undertaking.

Further reading about the gap-filling process and algorithms

for its implementation are available in Table S1.
in several organisms. E. coli: Two new functions for two classical glycolytic
), were discovered (red) (Nakahigashi et al., 2009a). Human: Gluconokinase
olite 6-phosphogluconolactonate in the human reconstruction (Rolfsson et al.,
NAD biosynthesis pathway. Experiments demonstrated that a parallel pathway
).
d from high-throughput data (Covert et al., 2004), for example, a recent study
dating the function of just 12 genes (Barua et al., 2010). Additionally, a false-
onciled by updating regulatory rules for the iclR gene product’s transcriptional
so often be relieved via adaptive laboratory evolution. Such evolution drives
dies have shown that an organism can evolve to achieve the model-predicted
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4. Quantitative Phenotype Prediction throughOptimality
Principles
The previous section treated qualitative predictions that relate

to the presence or absence of parts from a reconstruction.

Quantitative predictions of phenotypic functions are more chal-

lenging but possible. The ability to compute quantitative organ-

ism functions from a genome-scale model represents a grand

challenge in systems biology. Quantitative predictions are

achievable with GEMs (even if they are based on incomplete

reconstructions) by deploying cellular optimality principles.

Evolutionary arguments underlie the deployment of optimality-

based hypotheses. Phenotypes maximizing a hypothesized

fitness function (as represented by an objective function) can

be computed with constrained-optimization methods (Orth

et al., 2010).

As for qualitative binary predictions of possible growth states,

incorrect quantitative predictions often lead to new biological

hypotheses and understanding. However, the discoveries

arising from quantitative phenotype predictions are typically of

a different nature than qualitative predictions. Rather than

relating tomissing reconstruction content (section 3), the discov-

eries from quantitative phenotype prediction often relate to

broad, fundamental organismal constraints (Beg et al., 2007;

Zhuang et al., 2011b) and evolutionary objectives and trade-

offs (Shoval et al., 2012).

Quantitative phenotype prediction has also proven to be

a useful capability for bioengineering applications. By opti-

mizing an engineering (instead of evolutionary) objective,

the best possible performance of an engineered biological sys-

tem can be determined. Furthermore, the specific flux states

needed to achieve high performance can guide engineering

design.

Workflow for Quantitative Phenotype Prediction

Quantitative phenotypes can be predicted through the same

computational procedures used for qualitative growth predic-

tions (Figure 4A). An objective (either evolutionary or engineer-

ing) is assumed and maximized computationally (subject to

flux balance and other constraints). The flux state(s) that

maximize the objective are then the predicted quantitative

fluxes. These predictions can then be compared to experi-

mental measurements. In cases of agreement, the evolu-

tionary hypothesis is supported. In cases of a disagreement

between experimental and theoretical predictions, either the

biological system has not been exposed to the selection

pressure to reach the theoretical optimum (i.e., the assumed

evolutionary objective is incorrect or partially correct) or

there are missing biological constraints that affect the theoret-

ical predictions (i.e., the relevant biological constraints are

incomplete).

Experimental evolution can discriminate between these alter-

natives (Ibarra et al., 2002; Schuetz et al., 2012) by exposing the

biological system to the appropriate selection pressure, leading

it to evolve toward the stated optimum. For example, in one

study, strains carrying deletions of one of six metabolic genes

were evolved on four different carbon sources. A total of 78%

of strains tested reached the metabolic model predicted optimal

growth rate after adaptive laboratory evolution after 40 days of

passage (Fong and Palsson, 2004).
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Flux Variability Analysis Calculates Possible Flux States

Flux balance analysis computes an optimal objective value and

a flux state that is consistent with that objective (and all of

the imposed constraints). While the objective value is unique,

multiple flux states can typically support the same objective

value in genome-scale models. For this reason, flux variability

analysis (FVA) is used to determine the possible ranges for

each reaction flux (Mahadevan and Schilling, 2003). With FVA,

the objective value is set to be equal to its maximum value,

and each reaction is maximized and minimized. For some

fluxes, their maximum value will be equal to their minimum,

enabling a specific prediction. For others, there may be a

wide range of possible values due to alternative pathways.

Often, a parsimonious flux state is also assumed and computed

with parsimonious FBA (pFBA) (Lewis et al., 2010a). With pFBA,

the sum of fluxes across the entire network is minimized

(again, subject to the optimal objective value determined);

pFBA will eliminate some alternative pathways. Typically,

many reaction fluxes can be uniquely predicted with optimality

and parsimony assumptions. Additional biological constraints in

next-generation models (section 6) reduce the possible flux

states further (Lerman et al., 2012).

Types of Possible and Evolutionarily Optimal

Quantitative Predictions

The simplest type of quantitative phenotype predictable with

constraint-based models is nutrient utilization. While metabolic

models do not predict absolute rates of nutrient uptake, they

predict the optimal ratios at which nutrients are utilized. For

example, metabolic models predict an optimal oxygen uptake

rate relative to the carbon source uptake rate (resulting in a pre-

dicted optimal ratio between the two nutrients). In an early

study, the ratios of oxygen and carbon uptake were shown to

be predictable for a number of carbon sources in E. coli

(Edwards et al., 2001). In a later study, E. coli was evolved in

the laboratory on a carbon source (glycerol) for which the

wild-type strain did not match the predicted nutrient utilization;

after evolution, the strain exhibited the optimal uptake rates

predicted theoretically (Figure 4B) (Ibarra et al., 2002). Compar-

ison of experimental and predicted phenotypes therefore

reveals the environments to which an organism has been evolu-

tionary exposed.

Metabolic fluxes for central carbon metabolism can be esti-

mated with 13C carbon labeling experiments, making them

candidates for quantitative prediction (Figure 4B). Since the

dimensionality of carbon labeling data is larger than that for

nutrient uptake, there is more opportunity to dissect the differ-

ences in computed and measured fluxes to better understand

the multiple objectives and constraints underlying microbial

metabolism. Impressively, the biomass objective function can

explain a large amount of the variability of fluxes (Schuetz

et al., 2007). Failure modes in prediction have led to the appreci-

ation of the importance of protein cost (O’Brien et al., 2013) and

membrane (Zhuang et al., 2011b) and cytoplasmic spatial con-

straints (Beg et al., 2007), which affect the optimal flux state

(Figure 4C). Furthermore, failure modes have led to the under-

standing that metabolism is simultaneously subject to multiple

competing evolutionary objectives, resulting in trade-offs (e.g.,

growth versus maintenance) employed by different species



Figure 4. Quantitative Phenotype Prediction

Using Optimization
(A) Quantitative phenotype prediction is an
iterative workflow. First, hypothesized biological
constraints and objectives are formulated
mathematically, and computational optimization
is used to determine optimal phenotypic states
(see section 2). The predicted phenotypic
states can then be compared to experimental
measurements to identify where predictions
are consistent. When consistent, the hypothe-
sized evolutionary objective and constraints are
validated. When inconsistent, laboratory evolu-
tion can be used to gain further insight as to
why the computed and measured states differ.
Examples of validation of quantitative pheno-
types are detailed in (B), and further hypotheses
derived from incorrect predictions are detailed
in (C).
(B) The generic workflow in (A) has been
successfully applied to several classes of phe-
notypes. (1) Nutrient utilization ratios can be
predicted by maximizing biomass flux (Edwards
et al., 2001). (2) Central carbon metabolism fluxes
can be predicted; for some organisms, much of
the variability in flux can be attributed to biomass
flux maximization (Schuetz et al., 2012). (3) The
ratio of organism abundances and nutrient ex-
changes can be predicted for both natural and
synthetic communities. Note that one important
feature of quantitative phenotype predictions is
that optimal flux solutions are often not unique.
To address this, flux variability analysis (FVA)
(Mahadevan and Schilling, 2003) can be used to
identify the ranges of possible fluxes. It should be
noted that non-uniqueness is not necessarily a
handicap of COBRA, as biological evolution can
come up with alternate solutions (Fong et al.,
2005).
(C) Inconsistencies with model predictions
have led to the appreciation of new constraints
and objectives underlying cellular phenotypes.
(1) Inconsistent predictions in by-product
secretion have led to the hypothesis that
membrane space limits membrane protein
abundance and metabolic flux (Zhuang et al.,
2011b). (2) The range of metabolic fluxes
observed across different environments has led
to the realization that fluxes can be understood
as simultaneously satisfying multiple competing
objectives, such as growth and cellular mainte-
nance. Multi-objective optimization algorithms
find solutions that maximize multiple competing
objectives.
(D) Accurate prediction of quantitative pheno-
types has led to prospective design of biological
functions. A number of algorithms have been
developed that predict genetic and/or environ-

mental perturbations required to achieve a bioengineering objective. Relevant bioengineering objectives have included biosensing, bioremediation, bio-
production, the creation of synthetic ecologies, and the intracellular production of reaction oxygen species (ROS) to potentiate antibiotic effects.
(Figure 4C). In this way, outliers in quantitative predictions can

improve the understanding of constraints and objectives under-

lying a particular organism’s metabolism.

Optimality principles from stoichiometric models have also

been expanded from single populations of cells to microbial

communities. To model microbial communities, multiple species

are linked together through the exchange of nutrients extra-cell-

ularly (Stolyar et al., 2007) or through direct electron transfer

(Nagarajan et al., 2013). The secretion rate from one species

limits the uptake rate for others, resulting in balanced species
interactions. For a number of cases of communities composed

of two or three members, the optimal rate of nutrient exchange

and the ratio of the species in the population (Wintermute and

Silver, 2010) can be predicted. The effects of spatial organization

of community members are also being uncovered (Harcombe

et al., 2014). The constraints on nutrient flow between organisms

(e.g., diffusion) have proven to be important for predicting com-

munity composition and behavior, highlighting the importance

of abiotic constraints and community structure in the behavior

of biological communities.
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Figure 5. Data Integration and Exploration of Possible Cellular Phenotypes
(A) The general workflow formulti-omic data integration begins with the conversion of the experimental data intomodel constraints (see B). This procedure results
in cell-type- (e.g., neuron, macrophage) and condition-specific (e.g., healthy versus diseased) models that represent the metabolic capabilities of those specific
cells (see C). Several computational procedures can then be used to explore the metabolic capabilities and determine achievable phenotypes systematically (see
D). Evaluation of these phenotypic capabilities and comparison of different cells or environments leads to identification of their molecular differences (see E).
Additionally, if the original experimental data cannot precisely distinguish between certainmetabolic states, additional targeted experiments can be designed and
integrated as further constraints.
(B) Numerous data types can be integrated into metabolic models. Some directly affect model structure and variables (e.g., growth rate, biomass composition,
exchange fluxes, internal fluxes, and reaction directionality). Standard processing of these data types allows for integration into themodel. Other data types affect
metabolic fluxes more indirectly. As such, different computational methods exist for formulating the appropriate constraints (Table S1).
(C) Experimental data are integrated to construct cell-type- and/or condition-specificmodels. Thesemodels represent themetabolic capabilities in a certain state
and are then used for further inquiry (see D and E). Specific algorithms for building cell-type-specific models from gene expression data include MBA (Jerby et al.,
2010) and GIMME (Becker and Palsson, 2008).

(legend continued on next page)
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Evolution is a natural counterpart to optimality-based predic-

tions with constraint-based methods. Constraint-based opti-

mality predictions have focused on predicting the endpoints of

short-term experimental evolution. However, this scope of appli-

cation has increased in recent years to study long-term pheno-

typic and enzyme evolution (Nam et al., 2012; Plata et al., 2015).

From Optimality Principles to Prospective Design

Quantitative phenotype prediction via optimization is also

commonly used for bioengineering applications (Figure 4D).

For example, in metabolic engineering, optimal pathway yields

are used to prioritize pathways to be built into a production strain

and to benchmark their performance. Furthermore, the flux

states required to achieve these optima (and how they differ

from wild-type growth states) can guide strain design (Cvijovic

et al., 2011).

A number of design algorithms have been built to work with

metabolic models and predict the genetic and environmental

modifications to increase performance (Burgard et al., 2003;

Ranganathan et al., 2010). While many design algorithms and

applications have been focused on metabolite production (e.g.,

for production of fuels and chemicals), metabolic models have

also been utilized for the design of biosensors (Tepper and

Shlomi, 2011) and biodegradation (Scheibe et al., 2009; Zhuang

et al., 2011a). Also, design has expanded beyond single popula-

tions to microbial communities/ecosystems (Klitgord and Segrè,

2010).

Recapitulation

Quantitative phenotype predictions initially focused on simple

physiological predictions and are still expanding to more com-

plex phenotypes, biological systems (Levy and Borenstein,

2013), and environments. Although there have been notable suc-

cesses of quantitative phenotype prediction, certain phenotypes

are still difficult to predict. Historically, difficult predictions have

led to the development of new computational methods and an

appreciation of new biological constraints. Table S2 summarizes

several types of predictions and the approximate performance of

constraint-based methods utilized to date. The expansion in the

scope and accuracy of predictions continues today, with models

of increased scope (Chang et al., 2013a; O’Brien et al., 2013),

discussed in section 6.

Thus far, quantitative phenotypes have been limited primarily

to microbial systems and, more recently, plants (Collakova

et al., 2012; Williams et al., 2010). For multi-cellular organisms,

specialized cell types support the fitness of the entire organism.

Cell-type-specific ‘‘objectives’’ have been constructed (Chang

et al., 2010), though they typically are used for qualitative (sec-

tion 3) rather than quantitative phenotype prediction. Instead,

quantitative phenotypes in multi-cellular organisms are typically

determined through model-driven analysis of experimental data,

discussed in section 5.
(D) After adding constraints to the model, computational procedures are used to
main methods for querying the consequences of the measured data on a cell’s
(MCMC) sampling. (1) FVA determines the maximum and minimum values of all m
vectors (usually resulting in tens to hundreds of thousands of flux vectors). These
values for a given metabolic reaction.
(E) Often a comparative approach is employed in which experimental data from
achievable phenotypes of the two states are compared (e.g., though MCMC sam
5. Multi-Omic Data Integration: Constraining
and Exploring Possible Phenotypic States
With the expanding quantity of omics and other phenotypic data,

there is an increasing need to integrate these data sets to drive

further understanding and hypothesis generation. Phenotypic

data types can be integrated with metabolic GEMs to determine

condition-specific capabilities and flux states in the absence of

assumed objectives (section 4). Computational methods that

identify the possible range of phenotypic states given the

measured data allow one to quantify the degree of (un)certainty

in metabolic fluxes. Some types of data are quantitative and

directly indicative of metabolic fluxes, whereas other data are

qualitative or indirectly related to metabolic fluxes. By layering

different data types, the true state of a biological system can

be determined with increased precision. The need for formal

integration of disparate data types represents a grand challenge

that has been termed Big Data to Knowledge (BD2K, http://

bd2k.nih.gov).

Workflow for Multi-omic Data Integration

The overall procedure for multi-omic integration with genome-

scale models is an iterative workflow (Figure 5A). Once experi-

mental data from the particular biological system under study

is obtained, it is converted into constraints on model function

(Figure 5B). The successive application of experimentally

derived constraints to the reaction network results in the gener-

ation of a cell-type- and condition-specific model (Figure 5C).

Several computational procedures can then be used to explore

the metabolic capabilities and achievable phenotypes of the

experimentally constrained model (Figure 5D). Evaluation of

these phenotypic capabilities and comparison of different cells

or environments lead to identification of their molecular differ-

ences (Figure 5E), providing biological insight and driving further

hypotheses.

Converting Data to Model Constraints

Successive imposition of constraints is a basic principle of

COBRA (Palsson, 2000). Some data types can be directly con-

verted into constraints on model variables. Biomass composi-

tion and growth rate affect the metabolic demands of cellular

growth (Feist and Palsson, 2010). Time-course exo-metabolo-

mics can be used to set the uptake and secretion rates of nutri-

ents (Mo et al., 2009). Intracellular quantitative metabolomics

combined with reaction free energies can discern condition-

specific reaction directionalities (Henry et al., 2007). Isotopomer

distributions from cellular biomass or metabolite pools can be

used to infer and constrain intracellular fluxes (Zamboni et al.,

2009). These data can be used separately or combined to iden-

tify with increasing precision the true state of the cell.

Other data types affect metabolism more qualitatively. In the-

ory, quantitative metabolite, transcript, and protein levels can be

used to constrain metabolism quantitatively, but in practice,
assess the implication of the experimental data on metabolic fluxes. The two
phenotypes are flux variability analysis (FVA) and Markov-chain Monte-Carlo
etabolic fluxes. (2) MCMC sampling randomly samples feasible metabolic flux
sampled flux vectors can then be used to derive the distribution of possible flux

two conditions are used to generate two condition-specific models. Then, the
pling, see D).
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this requires many parameters that are hard to measure and are

organism specific. Instead, these data types can be used as

qualitative constraints relating to gene product or metabolite

presence/absence; that is, if a metabolite is present, a reaction

must be active that produces it (Shlomi et al., 2008), and if a

gene product is absent, its catalyzed reactions cannot carry

flux (Jerby et al., 2010; Schmidt et al., 2013). Similarly, regulatory

interactions can be added to affect the presence/absence of

a gene product based on condition-specific activity of a tran-

scription factor (Chandrasekaran and Price, 2010).

Cell-Type- and Condition-Specific Models

Starting from a large reconstructed reaction network (e.g., repre-

senting all metabolic reactions encoded in the human genome

[Thiele et al., 2013]), the imposition of experimental data results

in the generation of cell-type- and condition-specific models.

Experimentally derived constraints pare down the achievable

phenotypes from those encoded by the totality of the cell’s

genome. By eliminating phenotypes that cannot be achieved,

this new model represents the capabilities of the particular cell

type and environment assayed. This model summarizes the

experimental data in a self-consistent and integrated format

and forms the starting point for further computational and biolog-

ical inquiry (Agren et al., 2012; Shlomi et al., 2008) (see Figures

5D and 5E).

Quantifying Uncertainty

Once a cell-type- and condition-specific model is created,

computational methods are used to determine the possible

flux states of the cell. FVA (which is described in section 4)

(Mahadevan and Schilling, 2003) can be used to determine the

range of fluxes that are consistent with the experimental data.

A more refined approach is flux sampling (Schellenberger and

Palsson, 2009) (typically with Markov Chain Monte Carlo

[MCMC] methods), which determines the distribution of fluxes

for all reactions (instead of simply the range). When no cellular

objective is assumed, the feasible flux space is very uncon-

strained and a particular reaction could be operating at nearly

any flux value. As more data are layered, the feasible flux space

decreases. When no objective is assumed, fluxes are rarely

precisely known, and many will remain completely unknown.

However, an imprecisely known flux space is often sufficient

to discern differences between two environments/states as

discussed in the following subsection.

Using Computed States to Drive Discovery

Once the range of possible phenotypic states is quantified, they

must be analyzed to gain biological insights. Often a compara-

tive approach is employed, in which two experimental states

(e.g., neurons from Alzheimer’s disease patients compared to

healthy controls [Lewis et al., 2010b]) are compared. Reactions

that have a non-overlapping FVA range must be different be-

tween the two states and can be indicative of important meta-

bolic changes. In cases in which the FVA ranges are overlapping,

the flux distributions from MCMC sampling can still be different;

that is, the reactions are likely different between the two states,

but the current experimental data are insufficient to guarantee it.

Pathway visualization is also helpful in gaining insight into

changes in cell states—fluxes (or flux ranges) are most com-

prehensible in a network context. A few tools exist for the visual-

ization of metabolic fluxes; some are based on static maps
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(Schellenberger et al., 2010), whereas others create auto-gener-

ated layouts and new tools allow for the drawing of maps based

on flux solutions (King and Ebrahim, 2014). Finally, identifying

reactions or subsystems that remain partially identified (e.g.,

based on a large FVA range) can guide further experimentation,

resulting in an iterative computational and experimental elucida-

tion of a cell’s state.

Recapitulation

GEMs can be used to integrate numerous data types. In fact,

as more experimentally derived constraints are successively

imposed, analysis often becomes easier (as the range of

possible solutions shrinks [Reed, 2012]) instead of more chal-

lenging, as often occurs with statistically based data integration

procedures. A current challenge with metabolic GEMs is the

explicit integration of data types that do not directly reflect meta-

bolic fluxes (e.g., transcriptomics, proteomics, and regulatory

interactions). This challenge is primarily due to the fact that

these processes are not explicitly described in metabolic

models. Expansion of metabolic models to encompass gene

expression hold promise to address this challenge and are

discussed in section 6.

6. Moving beyond Metabolism to Molecular Biology
Up to this point, this Primer has focused on metabolic models,

or M models. M models have reached a high degree of sophisti-

cation after 15 years of development, resulting in standard

operating procedures for their construction (Thiele and Palsson,

2010) and use (Schellenberger et al., 2011a). However, M

models are limited in their explicit coverage to metabolic fluxes.

Thus, a grand challenge in the field has been to expand the con-

cepts of constraint-basedmodels of metabolism to other cellular

processes to formally include more disparate data types in

genome-scale models (Reed and Palsson, 2003).

Computing Properties of the Proteome

The process of addressing this grand challenge has begun

(Figure 6A). Recently, genome-scale network reconstructions

have expanded to encompass aspects of molecular biology.

Two significant expansions are genome-scalemodels integrated

with protein structures, GEM-PRO, and integrated models of

metabolism and protein expression, ME models. GEM-PRO al-

lows for structural bioinformatics analysis to be performed

from a systems-level perspective and to have those results in

turn affect network simulations. ME models allow for the simula-

tion of proteome synthesis and account for the capacity and

metabolic requirements of gene expression.

A Structural Biology View of Cellular Networks

GEM-PRO reconstructions can have varying degrees of detail,

which affects the types of analysis possible. So far, GEM-PRO

reconstructions have been created for T. maritima (Zhang

et al., 2009) and E. coli (Chang et al., 2013a; Chang et al.,

2013b). Initial reconstructions have focused on single peptide

chains (Zhang et al., 2009) and have utilized homology modeling

to fill in gaps where organism-specific structures have not been

identified. Further reconstruction detail has included protein-

ligand complexes (Chang et al., 2013a) and quaternary protein

assemblies (Chang et al., 2013b). To link the structures to the

metabolic model, structural data directly reference the GPRs in

the metabolic reconstruction. For cases of protein-metabolite



Figure 6. Expansion of Genome-scale

Models to Encompass Molecular Biology
(A) Metabolic models have been expanded to
encompass the processes of proteome synthesis
and localization as well as data on protein struc-
tures. Models including protein synthesis and
localization are referred to as ME models, which
stands formetabolism and gene expression. GEM-
PRO refers to genome-scale models integrated
with protein structures. For GEM-PRO, a combi-
nation of structural data directly references the
GPRs in the metabolic reconstruction; structures
can be obtained from experimental databases or
homology modeling. The E. coli ME model mech-
anistically accounts for �80% of the proteome
mass in conditions of exponential growth and
100% of other major cell constituents (DNA, RNA,
cell wall, lipids, etc.).
(B) Addition of cellular processes vastly increases
the predictive scope of models. ME models
can predict biomass composition, abundances
of protein across subsystems, and differential
gene expression in certain environmental shifts
(in addition to the predictions possible with M
models); like FBA, these were predicted by
assuming growth maximization as an evolutionary
objective, though the specific optimization algo-
rithm differs due to the addition of coupling con-
straints. GEM-PRO has been used to predict
the metabolic bottlenecks and growth defects of
changes in temperature on protein stability and
catalysis; protein stability is predicted with struc-
tural bioinformatics methods and is then used
to limit the catalyzed metabolic flux. The uses of
these integrated models are just beginning to be
explored.
complexes, the metabolites also need to be properly annotated

in the structural data. The structural reconstruction therefore

provides a physical embodiment of the gene-protein-reaction

relationship.

There are a few notable cases demonstrating the unique anal-

ysis possible with the combination of protein structures and

network models. In T. maritima, network context and protein

fold annotations were combined to test alternative models for

pathway evolution (Zhang et al., 2009). The T. maritima GEM-

PRO supported the patchwork model for genesis of new meta-

bolic pathways. In E. coli, the effect of temperature on protein

stability and enzyme activity was simulated at the systems level,

recapitulating the effects of temperature on growth (Chang et al.,

2013a). Also inE. coli, protein-ligand interactionswere combined

with gene essentiality predictions to discover new antibiotic

leads and off-targets (Chang et al., 2013b). These examples

just scratch the surface of analyses made possible with the inte-

gration of network and structural biology.

Modeling Molecular Biology and Metabolism

ME models formalize all of the requirements for biosynthesis

of the functional proteome (Figure 6B). They compute the

proteome composition and its integrated function to produce

phenotypic states and all of the metabolic processes needed
Cell
for its synthesis. This represents an inte-

grated view of metabolic biochemistry

and the core processes of molecular

biology. As with GEM-PRO, the first ME
models were formulated for T. maritima (Lerman et al., 2012)

and E. coli (O’Brien et al., 2013; Thiele et al., 2012).

The reconstruction of a ME model starts with the formation of

reactions for gene expression and enzyme synthesis (Thiele

et al., 2009). The processes explicitly accounted for in ME

models are very detailed, including transcription units and

initiation and termination factors for transcription, tRNAs and

chaperones needed for translation and protein folding, andmetal

ion and prosthetic group requirements for catalysis. In other

words, the reconstructions strive to match as closely as possible

all of the biochemical processes required to synthesize fully

functional enzymes. To create a ME model, the reactions for

enzyme synthesis are coupled to the totality of metabolic

reactions with pseudo-kinetic constraints, termed ‘‘coupling

constraints’’ (Lerman et al., 2012; Thiele et al., 2010). These con-

straints relate the abundance of an enzyme (or any ‘‘recyclable’’

chemical species, e.g., mRNA, tRNA) to its degradation rate and

catalytic capacity.

ME models thus significantly expand the scope of possible

phenotype predictions to include aspects of transcription and

translation. RNA and protein biomass composition are variables

in ME models and are no longer set a priori (as in the biomass

objective function of M models). ME models predict the
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experimentally observed linear changes in the ratio of RNA-to-

protein mass fractions as a consequence of changes in protein

synthesis demands (O’Brien et al., 2013). Furthermore, the

mass fractions of protein subsystems agree well with those

predicted by the ME model. This shows that the broad distri-

bution of protein subsystem abundance is predictable using

optimality principles, and the comparison reveals that some

subsystems were under-predicted, thus identifying them as

gaps in knowledge and targets for further reconstruction and

model refinement (Liu et al., 2014). While the quantitative predic-

tion of individual protein abundances is currently beyond the

scope of the ME model (as these demands depend on

enzyme-specific kinetics), the ME model has been shown to

accurately predict differential expression across certain environ-

mental shifts due to the differential requirements of proteins

across conditions (a more qualitative than quantitative predic-

tion) (Lerman et al., 2012).

A recent expansion to the ME model includes the addition of

protein translocation, allowing for the localization of protein to

be computed (Liu et al., 2014) (i.e., into cytoplasm, periplasm,

and inner and outer membrane). Translocase abundances and

compartmentalized proteome mass were accurately predicted

from the bottom up based on optimality principles. Addition of

compartmentalization also allows for membrane area and cyto-

plasmic volume constraints to be formalized, which, if combined

with GEM-PRO, approaches a digital embodiment of a three-

dimensional cell.

Recapitulation

The predictive ability of metabolic models are dictated by the

scope of the reconstruction. Nearly all of the predictions ofmeta-

bolic models outlined in the previous sections can be refined and

expanded with GEM-PRO or ME models. Advances to include

protein structures and protein synthesis open new vistas for

constraint-based modeling.

The scope of genetic perturbations (section 2) that can be

simulated is significantly larger due to the inclusion of genes

for gene expression (and accounting for protein cost) and the

effects of coding mutations on protein structures; GEM-PRO

also expands the scope of environmental perturbation to enable

simulation of changes in temperature. GEM-PRO allows for

new gap-filling approaches (section 3) based on structural bioin-

formaticsmethods. MEmodels expand the scope of quantitative

molecular phenotypes to include transcript and protein levels

(section 4), and transcriptomics and proteomics can be analyzed

in mechanistic detail (section 5).

With the added capabilities of GEM-PRO and MEmodels also

comes additional computational challenges. While single-opti-

mization calculations with M models take less than a second

on a modest laptop computer, growth maximization with a ME

model can take more than an hour. The ME model also requires

specialized high-precision solvers. Many promising applications

of GEM-PRO will require simulation of protein dynamics with

molecular dynamics (MD) and hybrid quantum mechanics/

molecular mechanics (QM/MM) simulations on protein struc-

tures. High-performance computing environments are required

for such simulations, and there is a pervasive trade-off between

the precision of simulations and the scope of structural

coverage. However, advances in high-precision solvers for
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ME models (Sun et al., 2013) and structural simulations for

GEM-PRO have been rapid and are likely to ameliorate these

challenges.

Like discoveries enabled by comparing M model predictions

to experimental data, we anticipate that much biology can be

learned from comparing in silico and in vivo proteome allocation

(O’Brien and Palsson, 2015), leading to increasingly predictive

models. The E. coli ME model currently encompasses many

key cellular functions, covering �80% of the proteome by

mass in conditions of exponential growth; the remaining prote-

ome mass outside of the scope of the model can guide model

expansion. In addition to DNA replication and cell division (Karr

et al., 2012), much of the remaining proteome mass involves

cellular stress responses (e.g., pH, osmolarity, osmotic); like

with temperature, GEM-PRO will aid in modeling these cellular

stresses.
Perspective
Genome-scale models have been under development since

the first annotated genome sequences appeared in the late

1990s. For most of this history, the focus of GEMs has been

on metabolism. After initial successes with metabolic GEMs,

it became clear that the same approach could be applied to

other cellular process that could be reconstructed in biochem-

ically accurate detail. Thus, a vision was laid out in 2003

that the path to whole-cell models was conceptually possible

and that such models could be used as a context for mecha-

nistically integrating disparate omic data types (Reed and

Palsson, 2003). This vision is now being realized. This Primer

shows how six grand challenges in cell, molecular, and

systems biology can be addressed using GEMs. A surprising

range of cellular functions and phenotypic states can now be

dealt with.

We now have the tools at hand to develop quantitative geno-

type-phenotype relationships from first principles and at the

genome scale. Current models of prokaryotes account for meta-

bolism, transcription, translation, protein localization, and pro-

tein structure. Processes not described in the currentMEmodels

will be systematically reconstructed over the coming years to

gain a more and more comprehensive description of cellular

functions. Biology can thus look forward to the continued

development and use of a mechanistic framework for the study

of biological phenomena just as physics and chemistry have

enjoyed for over a century.
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