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A fundamental step in synthetic biology and systems biology is to derive appropriate mathematical

models for the purposes of analysis and design. For example, to synthesize a gene regulatory network,

the derivation of a mathematical model is important in order to carry out in silico investigations of the

network dynamics and to investigate parameter variations and robustness issues. Different

mathematical frameworks have been proposed to derive such models. In particular, the use of sets of

nonlinear ordinary differential equations (ODEs) has been proposed to model the dynamics of the

concentrations of mRNAs and proteins. These models are usually characterized by the presence of highly

nonlinear Hill function terms. A typical simplification is to reduce the number of equations by means of

a quasi-steady-state assumption on the mRNA concentrations. This yields a class of simplified

ODE models. A radically different approach is to replace the Hill functions by piecewise-linear

approximations [Casey, R., de Jong, H., Gouz �e, J.-L., 2006. Piecewise-linear models of genetic regulatory

networks: equilibria and their stability. J. Math. Biol. 52 (1), 27–56]. A further modelling approach is the

use of discrete-time maps [Coutinho, R., Fernandez, B., Lima, R., Meyroneinc, A., 2006. Discrete time

piecewise affine models of genetic regulatory networks. J. Math. Biol. 52, 524–570] where the evolution

of the system is modelled in discrete, rather than continuous, time. The aim of this paper is to discuss

and compare these different modelling approaches, using a representative gene regulatory network. We

will show that different models often lead to conflicting conclusions concerning the existence and

stability of equilibria and stable oscillatory behaviours. Moreover, we shall discuss, where possible, the

viability of making certain modelling approximations (e.g. quasi-steady-state mRNA dynamics or

piecewise-linear approximations of Hill functions) and their effects on the overall system dynamics.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A number of gene regulatory networks has been proposed to
perform certain desired functions. Examples include genetic
switches (Gardner et al., 2000), robust genetic oscillators (Elowitz
and Leibler, 2000) and the many entries submitted every year to
the international IGEM competition on synthetic biology (see
www.igem.org, for more details). A key step in the design and
analysis of synthetic biological networks is the possibility of in
silico testing of their behaviour, evaluation of the possible design
options and validation of their performance and viability. The
availability of a realistic mathematical model of the network of
interest is of the utmost importance to carry out such testing.

The recent development of advanced experimental techniques
in molecular biology has increased the amount of available
experimental data on gene regulation which has led to a rapidly
growing interest in mathematical modelling methods for the
ll rights reserved.

nikis).
study and analysis of gene regulation (de Jong, 2002; Endy and
Brent, 2001; Hasty et al., 2001; Karlebach and Shamir, 2008;
Smolen et al., 2000; Tyson, 1978). One of the very first
mathematical approaches is the framework of Boolean networks
(Kauffman, 1969, 1993; Somogyi and Sniegoski, 1996; Thomas,
1973) which is based on three assumptions: (i) the state of each
gene can be either ON or OFF, (ii) the regulatory control of gene
expression can be approximated by Boolean logical rules and (iii)
all genes update their ON and OFF state synchronously (Smolen
et al., 2000). Some recent studies deal with the comparison of
Boolean models with ordinary differential equations models by
considering specific biological networks (Chaves et al., 2006;
Davidich and Bornholdt, 2008). Specifically, in Davidich and
Bornholdt (2008) they demonstrate how a Boolean model can
be derived in terms of a mathematically well defined coarse-
grained limit of an underlying ODE model.

Instead of taking a continuous deterministic approach, some
authors have proposed using discrete stochastic models of gene
regulation. Two approaches widely used to model stochastic
events in gene regulatory networks are the chemical master
equation and the stochastic simulation algorithm (Arkin et al.,

www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2009.07.040
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1998; Gibson and Bruck, 2000; Gillespie, 1977; McAdams and
Arkin, 1997; Ribeiro et al., 2006; Samad et al., 2005).

This paper focuses on mathematical models based on ordinary
differential equations (ODEs). This kind of model is arguably the
most widespread formalism for modelling gene regulatory net-
works. These models are best analyzed using tools developed for
nonlinear systems, in order to investigate bifurcation behaviour,
locate limit cycles or analyze network dynamics. In the extensive
literature on different ODE modelling approaches, several options
are available, such as the number of equations to be used, the
functional form of the kinetic laws and parameter values. The aim
of this paper is to focus attention on the importance of these
choices. The goal is to study and compare the different dynamics
predicted by each model, emphasizing advantages and disadvan-
tages. We will see that the choice of modelling framework and the
assumptions made can determine the nature and quality of the
expected behaviour during the in silico testing and validation
phases.

For the sake of clarity and simplicity, we will illustrate our
findings by means of a widely used representative example: a
two-gene activator–inhibitor network (see Fig. 4). Such an
example, despite its simplicity, is well suited to emphasize the
major dynamic consequences of the various modelling options
being explored. It is worth mentioning here that different versions
of the activator–inhibitor network have been often studied in
previous work, e.g. in Widder et al. (2007) where no self-
regulation is considered, and also in Del Vecchio (2007),
Edelstein-Keshet (1988), Guantes and Poyatos (2006) where self-
regulation of one or both genes is considered. In our case we shall
not consider any self-regulation.

Here, we use this network to explore the impact of some key
assumptions commonly made when modelling gene networks.
Specifically, we study the effects of:
1.
 making the quasi-steady-state hypothesis for the mRNA
dynamics;
2.
 varying the Hill coefficients;

3.
 taking the limit of Hill coefficient to infinity, namely the

approximation of Hill functions with piecewise-linear (PWL)
functions;
4.
 discretizing the continuous-time ODE models.
We study all of the above cases by expounding in a new
framework some key results presented in the literature and by
extending and integrating them with novel analytical tools. We
wish to emphasize that the results presented in this paper can
have implications when larger and more complex synthetic
networks are studied.

The outline of the paper is as follows. In Section 2 we briefly
give an overview of gene regulatory networks. In Section 3 we put
the problem of modelling gene regulatory networks into the
framework of ordinary differential equations. We present the
different ODE models studied in this paper. We also derive a
general discrete-time model, as a discretized version of the
continuous time model. In Section 4, we write down the explicit
equations of each model, for the representative example of an
activation–inhibition network. Sections 5–7 present the mathe-
matical analysis of the various models. Specifically, in Section 5
we perform stability and bifurcation analysis of the nonlinear
models and reveals the effects of: (i) the steady-state mRNA
assumption, (ii) the selection of Hill coefficient values. Section 6
deals with the effects of the piecewise linear approximation of the
Hill function and Section 7 shows the effects of the discretization
of the continuous-time models. We then discuss in Section 8 the
generalizability of our results to other network structures and the
implications of our findings to larger networks. In the final section
we present our conclusions.
2. Gene regulatory networks: an overview

The central dogma defines the paradigm of molecular biology.
Genes are perpetuated as sequences of nucleic acid, but function
by being expressed in the form of proteins (Lewin, 2007).
Transcription and translation are responsible for their conversion
from one form to the other. Transcription generates a messenger
RNA (mRNA) which provides an intermediate that carries the copy
of a DNA sequence that represents a protein. It is a single-stranded
RNA identical in sequence with one of the strands of the duplex
DNA. In protein-coding genes, translation will convert the
nucleotide sequence of mRNA into the sequence of amino acids
comprising a protein (Lewin, 2007). This two-stage process is
called gene expression.

Each protein produced by the genes has its own role in the cell.
Some proteins are structural and will accumulate at the cell-wall
or within the cell to give it particular properties. Other proteins
can be enzymes that catalyse certain reactions. A large group of
proteins have an important role in the regulation of the genes,
known as transcription factors. Gene regulation by transcription
factors can be negative or positive. In negative regulation, an
inhibitor protein binds the operator to prevent a gene from being
expressed. In positive regulation, a transcription factor is required
to bind at the promoter in order to enable RNA polymerase to
initiate transcription (Lewin, 2007).

Several other steps in the gene expression process may be
modulated (Lewin, 2007). Apart from DNA transcription regula-
tion, the expression of a gene may be controlled during RNA
processing and transport (in eukaryotes), RNA translation, and the
post-translational modification of proteins (de Jong, 2002). The
degradation of gene products can also be regulated in the cell.
Hence, a gene regulatory network is a collection of DNA, RNA,
proteins, and other molecules which interact with each other.
These interactions control the rates at which genes in the network
are transcribed into mRNA, the rates at which the mRNA are
translated into proteins and in general control the cell behaviour.
Gene regulation gives the cell control over its structure and
function, like the response of cells to environmental signals, the
differentiation of cells and groups of cells in the unfolding of
developmental programs, and the replication of the genome
preceding cell division (de Jong, 2002).
3. Modelling gene regulatory networks

Gene regulatory networks can be modelled from first princi-
ples using Michaelis–Menten enzymatic kinetics, together with
the usual rules of reaction kinetics (Alon, 2006). The resulting
models, when spatial effects are neglected, are given in terms of
ordinary differential equations describing the rate of change of the
concentrations of gene products and proteins. A key component of
all these models is the Hill function (Hill, 1910), used to describe
the transcription phase. The presence of this highly nonlinear
function, whilst accurately modelling the network, inevitably
leads to restrictions on the analytical tools available to understand
and predict the dynamics. It was proposed that the resulting
equations can be simplified by considering piecewise-linear
approximations of these Hill functions (Casey et al., 2006).
Another possibility (Coutinho et al., 2006) is to discretize the
continuous-time ODEs to obtain a discrete-time system. In what
follows, we briefly outline the main features of each of these
modelling approaches.
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Fig. 1. Transcription functions for activation and inhibition. Hill functions are

plotted in red, PWL functions in black. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

(a) Activation function (b) Inhibtion function.
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3.1. Ordinary differential equations

When ordinary differential equations are used, the cellular
concentration of proteins, mRNAs and other molecules are
represented by continuous time variables with the constraint
that a concentration cannot be negative. For a typical transcrip-
tion–translation process, the ODEs modelling approach associates
two ODEs with any given gene i; one modelling the rate of change
of the concentration of the transcribed mRNA, say ri, and the other
describing the rate of change of the concentration of its
corresponding translated protein, say pi. Thus for a network with
N genes we have

Transcription :
dri

dt
¼ Fðf R

i ðp1Þ; f
R
i ðp2Þ; . . . ; f

R
i ðpnÞÞ � giri; ð1Þ

Translation :
dpi

dt
¼ f P

i ðriÞ � dipi; ð2Þ

where i ¼ 1; . . . ;N. The functions f R
i ðpjÞ : R-R are usually non-

linear. They describe the dependence of mRNA concentration on
protein concentration pj. If protein pj has no effect on mRNA ri ,
then f R

i ðpjÞ is set to zero. The functional Fð�Þ in (1) is typically
defined in terms of sums and products of functions f R

i .
For example, if two proteins pl and pm are both needed to
regulate mRNA ri , then a candidate functional F might be
Fðf R

i ðplÞ; f
R
i ðpmÞÞ ¼ f R

i ðplÞf
R
i ðpmÞ. Eq. (1) states that the rate of change

in the concentration of mRNA ri is the difference between the
synthesis term Fðf R

i ðp1Þ; f
R
i ðp2Þ; . . . ; f

R
i ðpnÞÞ and the degradation

term giri. Function f P
i ðriÞ in (2) describes the translation of the

mRNA ri into a protein pi. Parameters gi; di ði ¼ 1; . . . ;NÞ, represent
the degradation parameters of the mRNAs and proteins produced
by gene i. As is common in many models, we shall assume that the
degradation of proteins or mRNAs is not regulated, namely that
it does not depend on the concentrations of other molecules in
the cell.

Transcription functions, f R
i ð�Þ, are derived from chemical first

principles (e.g. the law of mass action) or simple ‘‘second
principles’’ (e.g. Michaelis–Menten enzymatic kinetics). Experi-
mental evidence suggests a monotonic sigmoidal-shaped function
(Yagil and Yagil, 1971; Yagil, 1975) which increases when pi is an
activator and decreases when pi is an inhibitor. A useful function
satisfying this property is the Hill function. The Hill function for
activation, hþðpi; yi;niÞ : RZ0 �R2

40-RZ0, is increasing and has
two real parameters, yi and ni:

hþðpi;yi;niÞ ¼
pni

i

pni

i þ yni

i

: ð3Þ

It describes a curve that rises from zero and approaches unity
as shown in Fig. 1(a). The parameter yi is the expression threshold,
and has units of concentration. It is the threshold of protein
concentration, pi, needed to produce a significant increase in the
mRNA regulated by pi. The parameter ni is called Hill coefficient (or
cooperativity coefficient) and it controls the steepness of the Hill
function. The larger ni, the more step-like is the Hill function.
Biologically, the Hill coefficient is related to the molecular binding
mechanism. In simple cases n is the number of protein monomers
required for saturation of binding to the DNA (Widder et al.,
2007). The Hill function for inhibition, h�ðpi; yi;niÞ : RZ0�

R2
40-RZ0, is defined in a similar way (see Fig. 1(b)). It is a

decreasing function given by

h�ðpi;yi;niÞ ¼ 1� hþðpi; yi;niÞ ¼
yni

i

pni

i þ yni

i

: ð4Þ

Because of the nonlinearity of the Hill functions, the solutions of a
system of ordinary differential equations of a network of many
genes cannot generally be determined by analytical means.
Several authors have proposed to approximate the Hill
functions by piecewise-linear (PWL) functions (Casey et al.,
2006; Glass, 1975; Glass and Kauffman, 1973; Kauffman, 1969;
Sugita, 1961, 1963). This approximation is based on the switch-like
character displayed by some genes whose expression is regulated
by steep sigmoid curves. Below (above) a certain concentration,
the activator (inhibitor) protein has little influence, whereas above
(below) this concentration, the influence of the protein rapidly
reaches a maximum level (normalized to unity). From the
mathematical point of view, a piecewise-linear function can be
seen as the limit of the Hill function as the Hill coefficient ni tends
to infinity.

These piecewise-linear approximations are step functions,
s�ðpi; yiÞ and sþðpi; yiÞ, given by

sþðpi; yiÞ ¼
0; pioyi;

1; pi4yi;
s�ðpi; yiÞ ¼ 1� sþðpi; yiÞ:

(
ð5Þ

These are shown in Figs. 1(a) and (b) in black. These functions are
not defined for pi ¼ yi. Later we will show that this limitation has
important consequences for this modelling approach.

To avoid this problem, one can include a third section between
full activation (inhibition) and no activation (inhibition), where
the function increases (decreases) linearly with pi. In particular, in
the work originated by Plahte and Kjoglum (2005), and also in
Batt et al. (2008), Belta et al. (2005), and Gebert et al. (2007) the
following PWL function for activation is used:

lþðpi; y
1
i ; y

2
i Þ ¼

0; pioy1
i ;

mpi þ n; y1
i opioy2

i ;

1; pi4y2
i ;

8>><
>>: ð6Þ

which uses two threshold parameters y1
i ; y

2
i to define a saturation

interval, and two real parameters, m40 and no0 which define the
slope of the function between these two thresholds. Similarly the
inhibition function l�ðpi; y

1
i ; y

2
i Þ ¼ 1� lþðpi; y

1
i ; y

2
i Þ (Fig. 2).

While these functions resolve the problem of discontinuity at
the threshold, the extra linear region gives rise to other problems,
namely the need to identify the two threshold parameters y1

i ;y
2
i .
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Also, these functions become locally nonlinear if multiplication of
transcription functions are allowed.

The translation phase is modelled by (2). The function f P
i ðriÞ is

usually taken to be a linear term proportional to the concentration
of mRNA ri , resulting in a linear differential equation.

3.2. Assumption of quasi-steady-state mRNA concentrations

Many models in the literature make an important simplifying
assumption that the control of gene expression resides in the
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Fig. 2. PWL functions with saturation interval for activation and inhibition. (a)

Activation function (b) Inhibtion function.

Biologic

CompleteComplete Nonlinear model

Simplified Nonlinear model Simplified

Assumption:
PWL function

for transcription

Assumption:
PWL function

for transcription

Assumption:
quasi-steady-state

mRNAs

Fig. 3. The relationships between the biologi
regulation of gene transcription. This assumption is based on the
fact that, in some gene regulatory networks, the mRNA dynamics
are much faster than the protein dynamics, leading to the mRNA
concentrations reaching their equilibrium much faster than the
protein concentrations.

From the mathematical point of view, this assumption is
equivalent to taking _r i � 0 in (1) leading to the static equation:

ri ¼
1

gi

Fðf R
i ðp1Þ; f

R
i ðp2Þ; . . . ; f

R
i ðpnÞÞ: ð7Þ

Substituting this into (2) gives a reduced order model,
involving only the protein concentrations of each gene, of the form

_pi ¼ f P
i

1

gi

Fðf R
i ðp1Þ; f

R
i ðp2Þ; . . . ; f

R
i ðpnÞÞ

� �
� dipi: ð8Þ

This assumption is common in the literature, since many of the
proposed models silently adopt this simplification and use
equations only for the protein concentrations. However, as we
will see later, in some cases this assumption can have effects on
the predicted dynamics of a gene regulatory network.
3.3. Discrete-time modelling

As originally proposed by Glass and Kauffman (1973) and more
recently in Coutinho et al. (2006), discrete-time models can be
used to study gene regulatory networks. The idea is to derive a
difference-equation model describing the change of the gene
product concentrations at discrete time intervals. It is suggested
that this may be appropriate to (coarse-grain) model gene
regulation where local complex chemical reactions have to be
integrated over short time scales in order to produce interactions
affecting expression levels on larger time scales (Coutinho et al.,
2006). The discrete-time model in Coutinho et al. (2006) is based
on the quasi-steady-state mRNA assumption. Hence the model
al System

 PWL model Complete Discrete-time model

 PWL model Simplified Discrete-time model

Assumption:
quasi-steady-state

mRNAs

cal system and its mathematical models.
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has a single state variable (either mRNA or protein) for each gene.
The protein concentrations evolve according to combined inter-
actions from other genes in the network. The interactions are
given by step functions which assume that a gene acts on another
gene, or becomes inactive, only when its product concentration
exceeds a threshold. As will be shown later in this paper, it is
possible to consider the model in Coutinho et al. (2006) as a
specific instance of a wider class of models obtained by
discretizing the ODE model of the network of interest. Whilst
greatly simplifying computations, we will show that spurious
dynamics are introduced which can severely hinder understand-
ing of the network under consideration.
3.4. A summarizing scheme

The models under investigation in this paper are summarized
in Fig. 3. The complete nonlinear model (CNM) uses different
variables for the concentrations of mRNAs and proteins.
Transcription is modelled by a nonlinear Hill function and the
translation of mRNAs to proteins is modelled by simple linear
functions.

If we replace the Hill functions in the CNM by step functions
s�ðpi; yiÞ and sþðpi; yiÞ, we have the complete piecewise linear model
(CPWLM). This model retains different variables for the concen-
trations of mRNAs and proteins. If we make the quasi-steady-state
mRNA assumption, then from the complete nonlinear model
(CNM), we derive the simplified nonlinear model (SNM). If we
replace the Hill functions in the SNM by step functions s�ðpi; yiÞ

and sþðpi; yiÞ, we have the simplified piecewise linear model
(SPWLM). Later we will show a connection between the SPWLM
and the discrete-time model proposed by Coutinho et al. (2006).
(A higher-dimensional discrete-time model could also be obtained
by discretizing the CPWLM but this would present the same
problems discussed later as the one derived from the SPWLM.
For the sake of brevity, this model was therefore left out from
this paper.)
Table 1
Notation.

a; b genes

Ra ;Rb transcribed mRNAs

ra ; rb concentration of transcribed mRNAs

Pa ;Pb translated proteins

pa; pb concentration of translated proteins

ma;mb maximal transcription rates

ka; kb translation rates

ga ; gb mRNA degradation rates

da ;db protein degradation rates

ya ;yb expression thresholds

na;nb Hill coefficients

hþð�Þ Hill function for activation

h�ð�Þ Hill function for inhibition

sþð�Þ PWL function for activation

s�ð�Þ PWL function for inhibition
4. A representative example

To illustrate the advantages and disadvantages of the various
models, we use the activation–inhibition two-gene network as a
representative example (see Fig. 4). In doing so, we will integrate
and expand analysis presented in Widder et al. (2007) for a class
of two-gene networks.

In our network, the DNA is assumed to carry two genes, gene a

and gene b. Gene a has a binding site in the promoter region for an
activator (protein Pb) and gene b has a binding site for an inhibitor
(protein Pa). Binding of the proteins is assumed to occur fast
compared to transcription and translation, and accordingly the
equilibrium assumption is valid (Widder et al., 2007). We shall not
consider self-regulation; the protein produced by a gene does not
affect the expression of the gene itself. The notation pi-rj means
Fig. 4. An example of a genetic regulatory network consisting of two genes a and b.

concentrations are represented by the continuous variables pa ;pb; ra; rb , respectively. P

Protein Pa acts as an inhibitor on gene b, reducing the production of mRNA Rb . b) The
that, protein pi activates gene j whereas pi a rj means that protein
pi inhibits the gene expression of gene i.
4.1. The complete nonlinear model (CNM)

We start with the complete nonlinear model (CNM) of the
network of two genes shown in Fig. 4. Such a model uses four
state variables. The concentration of mRNA produced by gene i is
denoted by ri while the corresponding protein concentration is
denoted by pi, for i ¼ a; b. The activation of gene a by protein Pb

is modelled by the Hill function for activation hþðpb; yb;nbÞ. The
inhibition of gene b by protein Pa is modelled by the Hill function
for inhibition, h�ðpa; ya;naÞ. The translation of mRNA and the
degradation of mRNA and protein are all modelled by linear
functions. Based on the above, the ordinary differential equations
describing the reaction kinetics are

_ra ¼ mahþðpb; yb;nbÞ � gara;

_rb ¼ mbh�ðpa; ya;naÞ � gbrb; ð9Þ

_pa ¼ kara � dapa;

_pb ¼ kbrb � dbpb: ð10Þ

Other quantities in (9), (10) are defined in Table 1.
4.2. The simplified nonlinear model (SNM)

An alternative model can be obtained by assuming that the
mRNA dynamics are extremely fast when compared to the protein
dynamics and hence reach their equilibrium instantly. Assuming
quasi-steady-state mRNA concentrations for the activation–
inhibition network of Fig. 4, the dynamics can be described by
just two variables, say pa and pb. Fig. 4 shows the network
corresponding to the simplified nonlinear model (SNM). More
a) It consists of four molecular species; proteins Pa , Pb and mRNAs Ra , Rb . Their

rotein Pb acts as an activator on gene a; it increases the production of mRNA Ra .

network for the simplified nonlinear model.
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precisely, if we assume that _ra � 0 and _rb � 0 then (9) yields

ra ¼
ma

ga

hþðpb; yb;nbÞ;

rb ¼
mb

gb

h�ðpa; ya;naÞ: ð11Þ

Substituting (11) into (10), the equations for the protein
concentrations pa and pb become

_pa ¼ ka
0hþðpb; yb;nbÞ � dapa;

_pb ¼ kb
0h�ðpa; ya;naÞ � dbpb; ð12Þ

where

ka
0 ¼

ma

ga

ka; kb
0 ¼

mb

gb

kb: ð13Þ

4.3. The complete piecewise linear model (CPWLM) and the

simplified piecewise linear model (SPWLM)

If we approximate the transcription stages of the CNM with the
PWL functions sþðpi; yiÞ and s�ðpi; yiÞ as proposed in Casey et al.
(2006), then we obtain the equations of the complete piecewise

linear model (CPWLM), as follows:

_ra ¼ masþðpb; ybÞ � gara;

_rb ¼ mbs�ðpa; yaÞ � gbrb;

_pa ¼ kara � dapa;

_pb ¼ kbrb � dbpb: ð14Þ

To further simplify the CPWLM, we can make the quasi-steady-
state mRNA assumption to give the simplified piecewise linear

model (SPWLM):

_pa ¼ ka
0sþðpb; ybÞ � dapa;

_pb ¼ kb
0s�ðpa;yaÞ � dbpb; ð15Þ

where ka
0; kb
0 are given in (13).

4.4. Discrete-time model

A different way to model the network is to discretize its
dynamics. We show below that the model presented in Coutinho
et al. (2006) can be obtained by appropriately sampling the state of
the SPWLM presented earlier. Eq. (15) can be recast in matrix form as

_p ¼ Apþ Bu; ð16Þ

where

p ¼
pa

pb

 !
; A ¼

�da 0

0 �db

 !
; B ¼

ka
0 0

0 kb
0

 !
;

u ¼
sþðpb; ybÞ

s�ðpa; yaÞ

 !
: ð17Þ

Integrating (16), we have

pðtÞ ¼ eAtp0 þ ðe
At � IÞA�1Bu; ð18Þ

where

pað0Þ

pbð0Þ

 !
¼

pa0

pb0

 !
: ð19Þ
Over a sufficiently small time step T we have

pðt þ TÞ ¼
e�daðtþTÞ 0

0 e�dbðtþTÞ

 !
pa0

pb0

 !

þ

�
ka
0

da
ðe�daðtþTÞ � 1Þ 0

0 �
kb
0

db
ðe�dbðtþTÞ � 1Þ

0
BBB@

1
CCCA

sþðpb0
; ybÞ

s�ðpa0
; yaÞ

 !
:

ð20Þ

Note that T must be chosen small enough so that the
discretized dynamics approximate the continuous dynamics.
Typically T must be significantly smaller than the time constants
associated to the linear part of the continuous-time model. Hence
we take

T ¼
1

10
max

1

da
;

1

db

� �
: ð21Þ

Then for t ¼ 0, we have

paðTÞ ¼ e�daT pa0
þ

ka
0

da
ð1� e�daT Þsþðpb0

; ybÞ;

pbðTÞ ¼ e�dbT pb0
þ

kb
0

db
ð1� e�dbT Þs�ðpa0

; yaÞ: ð22Þ

Let us now rescale time such that T ¼ 1. Then if we set pa0
¼ paðnÞ

and paðTÞ ¼ paðnþ 1Þ (similarly pb0
¼ pbðnÞ and pbðTÞ ¼ pbðnþ 1Þ),

then we have the discretized form of Eq. (15):

paðnþ 1Þ ¼ e�da paðnÞ þ
ka
0

da
ð1� e�da ÞsþðpbðnÞ; ybÞ;

pbðnþ 1Þ ¼ e�db pbðnÞ þ
kb
0

db
ð1� e�db Þs�ðpaðnÞ; yaÞ: ð23Þ

For the case da ¼ ka
0 ¼ db ¼ kb

0, Eq. (23) becomes

paðnþ 1Þ ¼ apaðnÞ þ ð1� aÞsþðpbðnÞ; ybÞ;

pbðnþ 1Þ ¼ apbðnÞ þ ð1� aÞs�ðpaðnÞ; yaÞ; ð24Þ

where

a ¼ e�da ¼ e�db : ð25Þ

This corresponds to the model given by in Coutinho et al. (2006).
Parameter a represents the degradation of the gene and is always
between ½0;1�.

We move now to the analysis of the dynamics predicted by
each model.
5. Analysis

We will now present a systematic analysis of the models
described in the previous section. After deriving the equilibria of
both the CNM and SNM, we discuss their stability. We look for the
presence of persistent oscillations (limit cycles) by studying the
occurrence of Hopf bifurcations. We will show that the presence
of this bifurcation phenomenon is dependent on the modelling.
We also investigate the effect of varying the Hill coefficients,
confirming and extending the results of Widder et al. (2007).
Finally we show the effects of taking PWL approximations of the
nonlinear Hill kinetics and discuss how discretization introduces
spurious dynamics that can lead to incorrect predictions. In what
follows, for the sake of simplicity, we assume (with a slight abuse
of notation) that ya � yna

a and yb � ynb

b .
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5.1. Existence of equilibria

We start with the equilibria of the CNM and SNM. We set

_ra ¼ _rb ¼ _pa ¼ _pb ¼ 0; ð26Þ

in (9) and (10). We will label ~ra; ~rb; ~pa; ~pb as the steady-state values
of mRNA and protein concentrations, respectively. Note that from
(10) we have that

~ra ¼
da

ka

~pa; ~rb ¼
db

kb

~pb: ð27Þ

After some algebraic manipulation, we find that ð ~pa; ~pbÞ are given
by

yb

Xnb

k¼0

~pnaðnb�kÞþ1
a

nb

k

� �
yk

a

 !
þ ð ~pa � faÞðfbyaÞ

nb ¼ 0; ð28Þ

~pb ¼
fbya

ya þ ~pna

a

; ð29Þ
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Fig. 5. (a) Projection of trajectories in the protein subspace (pa , pb) of the CNM

(blue) and SNM (red) for the same parameters and initial conditions; na ¼ nb ¼ 3,

ma ¼ mb ¼ 1:8, ya ¼ yb ¼ 0:6542, and ka ¼ kb ¼ ga ¼ gb ¼ da ¼ db ¼ 1. (b) Time

evolution of the protein concentrations pa and pb . Blue corresponds to the CNM

and red corresponds to the SNM. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
where

fa ¼
maka

gada
; fb ¼

mbkb

gbdb
: ð30Þ

Solutions of Eq. (28) are possible equilibrium concentrations ~pa

(equilibrium concentrations ~pb, ~ra, ~rb are then easily obtained,
using (26), (29)). Eq. (28) is a polynomial of degree nanb þ 1.
Hence, for large Hill coefficients na and nb, it is difficult (or even
impossible) to obtain analytical forms of all the allowed
equilibrium concentrations.

Recall that the equations for the SNM were derived using the
steady-state mRNA assumption ð_ra ¼ _rb ¼ 0Þ. Therefore, the
protein equilibrium concentrations for the SNM will also be given
by Eq. (28). In Fig. 5 we can see that for a given parameter region
both models eventually approach the same fixed point. However,
trajectories of the SNM approach equilibrium much faster and in a
less oscillatory manner than those of the CNM.
5.2. Stability and bifurcations

We now study the stability of the predicted equilibria of the
CNM and the SNM. Let ACNM be the Jacobian of Eqs. (9) and (10)
of the CNM. For the vector x ¼ ðx1; x2; x3; x4Þ

T
¼ ðra; rb; pa;pbÞ

T,
we have

ACNM ¼ aij ¼
@ _xi

@xj

� �

¼

�ga 0 0 ma
@hþðpb; yb;nbÞ

@pb

0 �gb mb
@h�ðpa; ya;naÞ

@pa
0

ka 0 �da 0

0 kb 0 �db

0
BBBBBBBB@

1
CCCCCCCCA
: ð31Þ

The characteristic equation is then (Widder et al., 2007)

ðlþ gaÞðlþ gbÞðlþ daÞðlþ dbÞ þ DCNM ¼ 0; ð32Þ

where

DCNM ¼ mambkakbyayb

nanb ~p
ðna�1Þ
a

~pðnb�1Þ
b

ðya þ ~pna

a Þ
2
ðyb þ ~pnb

b Þ
2
: ð33Þ

Solving the characteristic equation (32) for different values of
DCNM , we find the different possible dynamical behaviours of our
system. Fig. 6(a) depicts the four eigenvalues of Eq. (32) as a
function of DCNM . Note that DCNM is always positive (for the sake of
completeness, we plot the eigenvalues also for DCNMo0). For a
certain value of DCNM ¼ DHopf , the real part of one of the
eigenvalues crosses zero, indicating a loss of stability through a
Hopf bifurcation. Widder et al. (2007) calculated this value
explicitly as

DHopf ¼
ðga þ gbÞðga þ daÞðga þ dbÞðgb þ daÞðgb þ dbÞðda þ dbÞ

ðga þ gb þ da þ dbÞ
2

ð34Þ

for the case when the Hill coefficients na, nb are equal and greater
than two.1 An example of oscillatory behaviour predicted by CNM
is shown in Figs. 7(a) and (b).

We shall now show that, under the mRNA quasi-steady-state
assumption, such limit cycles are not possible in the SNM. The
1 The proof is based on the criterion by Lienard–Chipart (see Gantmacher,

1998, p. 221).
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corresponding Jacobian matrix ASNM of SNM given by Eq. (12) is

ASNM ¼

�da ka
0
@hþðpb; yb;nbÞ

@pb

kb
0
@h�ðpa; ya;naÞ

@pa
�db

0
BBB@

1
CCCA ð35Þ

and the characteristic equation is then

ðda þ lÞðdb þ lÞ þ DSNM ¼ 0; ð36Þ

where

DSNM ¼
DCNM

gagb

: ð37Þ

Eq. (36) is quadratic and so the two eigenvalues l1;2 are given by

l1;2 ¼
�ðda þ dbÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðda þ dbÞ

2
� 4DSNM

q
2

: ð38Þ

So for l1;2 complex, their real part will be always equal to
� 1

2 ðda þ dbÞ. Since the protein degradation rates da; db are
biologically meaningful only when they are positive, a Hopf
bifurcation will never be possible in the SNM. In Fig. 6(b), l1;2

are plotted as a function of DSNM . We can see that the real part of
the complex eigenvalues remains constant and negative as a
function of DSNM .

Figs. 6(a) and (b) illustrate an important qualitative difference
between the two nonlinear models. The equilibria predicted by
the SNM are always stable, whereas the same equilibria predicted
by the CNM are liable to lose their stability under parameter
variation. The mRNA quasi-steady-state assumption results in an
over-simplification of the dynamics, with the loss of the Hopf
bifurcation. For example, Figs. 7(c) and (d) for the SNM, with the
same parameters as Figs. 7(a) and (b) for the CNM, have only
stable equilibria.
5.3. The quasi-steady-state mRNA assumption

If the mRNA concentrations reach their steady state values on a
time scale much quicker than the concentrations of the proteins,
then we are able to make the quasi-steady-state mRNA assump-
tion. For the system to behave in this way, any transients in the
mRNA concentrations have to be damped out quickly. In other
words, the two eigenvalues associated with the mRNA subspace of
the four dimensional CNM state space have to be in the left-hand
side of the complex plane and have much larger real parts in
modulus than the two eigenvalues associated with protein
subspace.

The four eigenvalues of the CNM state space are given by
the roots of Eq. (32). Whilst an exact solution of this
equation is unwieldy, we can see that in the case of
DCNM ¼ 0, the four eigenvalues are given exactly by l1;2;3;4 ¼

�ga;�gb;�da;�db. Similarly for DCNM small, these values are
approximately correct. So it is natural to think of g�1

a ; g�1
b as time

scales for the mRNA subspace and d�1
a ; d�1

b as time scales for the
protein subspace. Now let ga=da and gb=db be the ratios of the time
scales between the mRNA and protein dynamics for gene a and b,
respectively.

In order to make the quasi-steady-state mRNA assumption, we
need to take both ratios large. This is in line with our intuition
since in this case the damping ðga;bÞ associated with the mRNA
dynamics is much greater than the damping ðda;bÞ associated with
the protein dynamics, which in turn means that the mRNA
transients die out more quickly.

To gain a deeper insight, following Del Vecchio (2007), we now
consider the CNM equations in the form

_ra ¼ mahþðpb;yb;nbÞ �
ga

e ra;

_rb ¼ mbh�ðpa; ya;naÞ �
gb

e rb;

_pa ¼
ka

e ra � dapa;

_pb ¼
kb

e
rb � dbpb: ð39Þ

For e ¼ 1, Eq. (39) are the exact equations of the CNM. Looking at
the above equations, we can see that the time constants for the
mRNA concentrations ra; rb are tra ¼ e=ga; trb

¼ e=gb, respectively.
Also, for the protein dynamics of pa; pb the time constants are
tpa ¼ 1=da; tpb

¼ 1=db. Therefore, the ratio between the time scales
of mRNA dynamics and protein dynamics will be given by (for
example for gene a)

tra

tpa

¼ e da

ga

: ð40Þ
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As depicted in Fig. 8, the predictions of the SNM and the CNM
become significantly different as the time scales between the
mRNA and protein dynamics are varied. Specifically, when the two
time scales are comparable, the SNM just predicts the average
concentrations of the oscillations given by the CNM. However, as
the separation of time scales between mRNAs and proteins
becomes larger (e large), then the amplitude of the oscillations
predicted by the CNM gets smaller and smaller. In that case
although qualitatively the SNM still predicts a stable equilibrium,
quantitatively it will be very close to the predictions of the CNM.
For example, Fig. 8(c) shows that if the mRNA degradation rate is
50 times faster than the degradation rate of the proteins, then the
SNM will be able to give very similar quantitative predictions to
the CNM.

To show that the Hopf bifurcation disappears in the SNM, we
now recast system (39) as a slow–fast system by setting
~ra;b ¼ ra;b=e. Dropping the tildes, we have

1

e
_ra ¼ mahþðpb; yb;nbÞ � gara;

1

e
_rb ¼ mbh�ðpa;ya;naÞ � gbrb;

_pa ¼ kara � dapa;
_pb ¼ kbrb � dbpb: ð41Þ

For e ¼ 1, Eqs. (41) are Eqs. (9) and (10) for the CNM. The limiting
case e-1 corresponds to the quasi-steady-state mRNA assump-
tion, since:

lim
e-1

1

e
_ra ¼ lim

e-1

1

e
_rb ¼ 0: ð42Þ

We want to study how the stability of equilibrium solutions to
Eqs. (41) varies in the limit e-1. The Jacobian, ASF ðeÞ, derived
from the slow–fast model (41) is

ASF ðeÞ ¼

�ega 0 0 ema@hþðpb; yb;nbÞ

@pb

0 �egb emb@h�ðpa; ya;naÞ

@pa
0

ka 0 �da 0

0 kb 0 �db

0
BBBBBBBB@

1
CCCCCCCCA
ð43Þ

and the characteristic equation is

ðlþ egaÞðlþ egbÞðlþ daÞðlþ dbÞ þ DSF ðeÞ ¼ 0; ð44Þ
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where

DSF ðeÞ ¼ e2DCNM ¼ e2gagbDSNM ð45Þ

with DCNM being given by (33) and having used Eq. (37).
Dividing (44) throughout by e2 gives

l
e
þ ga

� �
l
e
þ gb

� �
ðlþ daÞðlþ dbÞ þ gagbDSNM ¼ 0: ð46Þ

In the limit e-1, Eq. (46) becomes

ðlþ daÞðlþ dbÞ þ DSNM ¼ 0; ð47Þ

which is precisely the characteristic equation (36) of the SNM.
We can find the analytical form of DHopf ðeÞ as a function of e,

where DHopf ðeÞ is the value of DSF ðeÞ at which system (41) can
undergo a Hopf bifurcation. After a lengthy calculation, we find

DHopf ðeÞ ¼
ðega þ egbÞðega þ daÞðega þ dbÞðegb þ daÞðegb þ dbÞðda þ dbÞ

ðega þ egb þ da þ dbÞ
2

:

ð48Þ

In the limit as e-1, we have

lim
e-1

DHopf ðeÞ ¼ lim
e-1

e3g2
ag2

bðda þ dbÞ

ðga þ gbÞ
¼ 1: ð49Þ

Hence we can see that the SNM never undergoes a Hopf
bifurcation and so will be unable to sustain any form of limit
cycle.

In Fig. 9, we plot the eigenvalues of the slow–fast system (41)
as a function of e. We note that as e increases, two of the
eigenvalues become large and negative, indicating that their
transients quickly die away and so justifying the quasi-steady-
state mRNA assumption. Note that for e ¼ 30 000, we are only able
to plot two of the four eigenvalues, since the other two have
extremely large and negative values.
5.4. Variation of the Hill coefficients

As we saw in the previous section, the SNM can never support
a limit cycle for the activation–inhibition network, no matter
what the value of the Hill coefficients, na and nb. However, for the
CNM, a Hopf bifurcation is possible depending on the value of the
system parameters. Widder et al. (2007) have shown that if
the two Hill coefficients are equal, namely na ¼ nb ¼ n, then the
two-node activation–inhibition network can undergo a Hopf
bifurcation for n42. In this section, we will extend this result to
the case when naanb for the activation–inhibition network, a
general situation closer to biological applications. Additionally,
we will consider non-integer values for the Hill coefficients
since this reflects the fact that such a function might fit well the
experimental data (Hill, 1910) (Fig. 10).

Following Widder et al. (2007), we consider a Hopf bifurcation
along the one-dimensional manifold defined by

ma ¼ was; mb ¼ wbs; ya ¼
la

s
; yb ¼

lb

s
: ð50Þ

From Eqs. (50) and (30) it follows that fi ¼ vis, for i ¼ a;b where

va ¼
ka

gada
wa; vb ¼

kb

gbdb
wb: ð51Þ

Substituting Eqs. (50) into (28) and expanding we have

lb ~pnanbþ1
a þ nb

la

s
~pnaðnb�1Þþ1

a þ � � � þ nb
la

s

� �nb�1

~pnaþ1
a þ

la

s

� �nb

~paÞ

 

þ ð ~pa � vasÞðvblaÞ
nb s ¼ 0: ð52Þ

We want to take the limit of this expression when the
auxiliary variable sb1. So we consider the equilibrium point ~pa
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to be of the form

~pa ¼ a1sm þ Oðsm�1Þ: ð53Þ

Substituting (53) into Eq. (52) and neglecting high-order terms
Oðsm�1Þ, it can be shown that, for very large s,

lb ~p
nanbþ1
a snb � vaðvblaÞ

nb snbþ2 ¼ 0 ð54Þ

and hence

~pa ¼ a1s2=ðnanbþ1Þ; ð55Þ

where

a1 ¼
vaðvblaÞ

nb

lb

� �1=ðnanbþ1Þ

: ð56Þ

We find ~pb from Eq. (29):

~pb ¼ a2s�2na=ðnanbþ1Þ; ð57Þ

where

a2 ¼
lbðvblaÞ

1=na

va

 !na=ðnanbþ1Þ

: ð58Þ

We now substitute the expressions for ~pa and ~pb, given by (55)
and (57), respectively, into Eq. (33) in order to obtain Dlim, the
limit of DCNM for s very large, to find

Dlim ¼ nanbgagbdadb: ð59Þ

This must be compared with the value DHopf which is required for
a Hopf bifurcation. As in Widder et al. (2007), we consider the
function:

Hðga; gb; da; db;na;nbÞ

¼
Dlim

DHopf
¼

nanbgagbdadbðga þ gb þ da þ dbÞ
2

ðga þ gbÞðga þ daÞðga þ dbÞðgb þ daÞðgb þ dbÞðda þ dbÞ

ð60Þ

A value of H41 indicates that a limit cycle exists for suffi-
ciently large values of s, for the activation–inhibition network.
The maximum of H is computed by partial differenti-
ation with respect to the degradation rate constants ga; gb;da; db.
Because (60) is symmetric with respect to all four degra-
dation parameters, all four partial derivatives will have
identical analytical expressions. For example (Widder et al.
(2007)):

@H

@ga

� �
¼ 0

) ðgaÞ
3
ðgb þ da þ dbÞ þ ðgaÞ

2
ððgbÞ

2
þ ðdaÞ

2
þ ðdbÞ

2
Þ

� 3gaðgbdadbÞ � gbdadbðgb þ da þ dbÞ ¼ 0: ð61Þ

If we consider gb ¼ da ¼ db ¼ g then it can be shown that Eq. (61)
will give ga ¼ g (Widder et al., 2007). Hence, from (60) we have
that

Hðg; g; g; g;na;nbÞ ¼
nanb

4
: ð62Þ

Through numerical simulations it was observed that other values
of the degradation parameters lead to smaller values of the
maximum of the function as observed in Widder et al. (2007) for
na ¼ nb. Hence systems with nanb44 can exhibit oscillatory
behaviour in certain regions of parameter space. In Fig. 11 we
plot regions in parameter space (na;nb) which have oscillatory
behaviour.
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2 In Farcot and Gouze (2006), it was shown that the simplified PWL model of

the activation–inhibition network converges towards a unique stable equilibrium

point. In the case of networks with three genes or more with a negative feedback

loop, it was shown that the SPWLM predicts a unique stable periodic orbit (Farcot

and Gouze (2006)). Their proof is an extension of a theorem presented by Snoussi

(1989).
3 For convenience in this section, we set ka

0 ¼ ka and kb
0 ¼ kb .
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6. Approximating the transcription Hill function

6.1. From the CPWLM to the SPWLM

When the Hill function of transcription in the CNM is
approximated by means of piecewise linear (PWL) functions, we
obtain the CPWLM. An important issue is to establish how this can
be simplified, by means of the quasi-steady-state mRNA assump-
tion, to give the SPWLM. To understand the advantages and
limitations of this approach, let us rewrite Eq. (14) of the CPWLM
in matrix form

_x ¼ Rxþ Su; ð63Þ

where

x ¼

ra

rb

pa

pb

0
BBBB@

1
CCCCA; R ¼

�ga 0 0 0

0 �gb 0 0

ka 0 �da 0

0 kb 0 �db

0
BBBB@

1
CCCCA;

S ¼

ma 0 0 0

0 mb 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA; u ¼

sþðpb; ybÞ

s�ðpa; yaÞ

0

0

0
BBB@

1
CCCA: ð64Þ

Matrix R is lower-triangular and so its eigenvalues lie along the
diagonal:

l1 ¼ �ga; l2 ¼ �gb; l3 ¼ �da; l4 ¼ �db: ð65Þ

The eigenvalues corresponding to gene a are l1 and l3. The
SPWLM will be biologically valid if the ratio of the two
eigenvalues, say ra ¼ l1=l3 ¼ ga=db is large enough.

Hence, if the degradation of mRNA is sufficiently faster
(say, at least 10 times) than the degradation of the corresponding
protein, then the stationarity approximation is biologically
justified. Note that, under certain conditions, it can be assumed
that the stationarity approximation is only valid for some
genes of the network. In that case, only those genes for
which the assumption is valid can be modelled by a single
equation for the protein concentration, while the rest will be
associated to two equations, one for the mRNA and one for protein
concentration.
6.2. Dynamics of the SPWLM

We have already seen that the SNM has qualitatively different
dynamics from the CNM. It is therefore reasonable to expect
that the use of the PWL approximation does not change this
conclusion.

Plahte and Kjoglum (2005) described two problems when the
PWL step function are being used to model gene regulatory
networks. One problem is to define a continuous solution across
the threshold hyperplanes when the model includes self-regula-
tion. The second is to prove that the solution of equations with
step functions is close to the solution of the same equations with
steep (large Hill coefficients) sigmoid functions.

As shown in Farcot and Gouze (2006) and Edwards (2000),
under certain conditions the SPWLM cannot predict the existence
of limit cycles contained in the CNM.2

The equations of the SPWLM are given in (15).3 These equa-
tions split the ðpa; pbÞ state space into four subregions, given by

1: 0opaoya and pb4yb ðsubregion IÞ;

2: pa4ya and pb4yb ðsubregion IIÞ;

3: pa4ya and 0opboyb ðsubregion IIIÞ;

4: 0opaoya and 0opboyb ðsubregion IVÞ:

ð66Þ

Each subregion has different governing equations and hence
different equilibria. The value of the equilibria ð ~pa; ~pbÞ in each
subregion is given by

I :
ka

da
;
kb

db

� �
;

II :
ka

da
;0

� �
;

III : ð0;0Þ;

IV : 0;
kb

db

� �
:

ð67Þ

Immediately it can be seen that the equilibria for subregions II and
III do not lie in their respective subregions. They are inaccessible
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from those subregions. Other equilibria will be accessible or
inaccessible, depending on parameter values.

The key to understanding the dynamics of the SPWLM is
that, depending on system parameters, at most one subregion
equilibrium is accessible. In these cases the system tends to
this equilibrium and no limit cycle is possible. But, in certain
regions of parameter space, all four subregion equilibria are
inaccessible. However, a limit cycle is not possible in this case
either (Edwards, 2000; Farcot and Gouze, 2006) and the system
tends to a pseudo-equilibrium, a point that is not an equilibrium of
any subregion.

A simple analysis shows that, depending on the para-
meters ka; kb; da; and db, we have four different cases to consider,
namely

1:
ka

da
4ya and

kb

db
oyb;

2:
ka

da
oya and

kb

db
4yb;

3:
ka

da
oya and

kb

db
oyb;

4:
ka

da
4ya and

kb

db
4yb:

ð68Þ
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The first three cases, shown in Fig. 13, are very similar. No
matter what set of initial conditions are chosen, the solution
trajectory always arrives at the accessible equilibrium (the
arrows in each of these figures denote sample trajectories). All
four subregion equilibria are shown in each figure, with
open circles denoting inaccessible equilibria and closed circles
accessible equilibria. In Figs. 13(a) and (c), the accessible
equilibrium is ð0; kb=dbÞ and in Fig. 13(b) it is ðka=da; kb=dbÞ. The
fourth case is shown in Fig. 13(d), together with a possible
limit cycle. This limit cycle can only trivially exist. Namely, the
only possible periodic solution are the trivial pa ¼ ya, pb ¼ yb,
what we call a focus-like point. Starting from any initial
condition, the system eventually converges to this point.
Due to the nature of the vector field, all trajectories are forced
to follow the sequence of switching regions, I-II-III-IV-I,
which finally leads the trajectories to the intersection of
the two thresholds ya; yb. For example, for the parameter values
considered in Fig. 12(d) we have ka=da ¼ kb=db ¼ 2:35 and
ya ¼ yb ¼ 0:21, which is case 3 in (68) illustrated in Fig. 13(d).
As shown in Fig. 12(d), the system eventually approaches
the focus-like point ðya; ybÞ. The stability of equilibria in
switching domains, was presented in Casey et al. (2006), where
the work of Gouze and Sari (2002) and de Jong et al. (2004) was
extended using the framework of differential inclusions and
Filippov solutions.

Similarly to the SNM, the SPWLM does not predict oscillations
for the activation–inhibition network. Therefore, the mRNA quasi-
steady-state assumption has also important effects when the
SPWLM is derived from the CPWLM. Additionally, comparing the
two simplified models, namely SNM and SPWLM, we see a
consistent difference caused by the approximation of the
continuous Hill functions by the step functions. In particular, the
SPWLM for some range of parameters, predicts a focus-like
Fig. 13. Vector fields for each of the different cases described in (68). The arrows in eac

each of the four subregions is denoted by the number of that region inside a circle. Op

stands for focus point. a) ka/da4ya and kb/dboyb, b) ka/daoya and kb/db4yb, c) ka/daoya
equilibrium point which corresponds to trajectories not always
close to those of the SNM.

As shown in Fig. 14, the behaviour of the SPWLM and the
SNM converge in the limit of large Hill coefficients. It is only
when such coefficients are sufficiently high that the SNM
solutions behave as the focus-like equilibrium point in the
SPWLM. For example, for na ¼ nb ¼ 100 (Figs. 14c, d), the
predictions of the SNM are extremely close to those of
the SPWLM (Figs. 14e, f) yet they differ when na ¼ nb ¼ 3
(Figs. 14a, b). Specifically, Figs. 14a, b and e, f, show that the
SNM for Hill coefficients na ¼ nb ¼ 3 predicts protein equilibrium
values with protein pa up to 5 times larger than protein pb while,
in the SPWLM, they both converge towards the same value at the
expression thresholds ya; yb. Hence, the PWL models will give
sufficient quantitative predictions when compared to the
nonlinear models only if the Hill function describing the
transcription has large Hill coefficients.

To quantify the mismatch between the predictions of the
two models, we plot in Fig. 15, the trajectories of the SNM and
those of the SPWLM as the Hill coefficients increase and the
relative percentage differences between their predicted values. In
Figs. 15(a) and (b), we see that, for some parameter values, the
predictions of the SPWLM are close to those of the SNM when the
Hill coefficients na ¼ nb ¼ ~n420. For different sets of parameters,
the threshold can become significantly lower as shown in
Figs. 15(c) and (d), where ~n � 6.

Finally, notice that quantitative differences also occur between
the CNM and the CPWLM. An additional difference here, is that for
some parameter regions, we have also qualitative differences.
There are regions of parameter space where the CNM predicts a
stable equilibrium, whereas the CPWLM predicts oscillations.
This is expected, because as we showed in Section 5.4, a Hopf
bifurcation is possible for our network if na � nbZ4 (a condition
h of these subfigures denote sample trajectories. In each figure, the equilibrium of

en circles denote inaccessible equilibria and closed circles accessible equilibria. FP

and kb/dboyb, d) ka/da4ya and kb/db4yb.
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4 In the context of piecewise-smooth systems, sliding refers to the high-

frequency (theoretically infinite) switching of the model between its possible

configurations. For more details about sliding motion in piecewise linear systems

see Di Bernardo et al. (2007).

A. Polynikis et al. / Journal of Theoretical Biology 261 (2009) 511–530 525
which is effectively always satisfied by the CPWLM). The
difference between CNM and CPWLM is illustrated in Fig. 16.

Also, in contrast with the CNM and SNM, the predictions of
the CPWLM do not approach the SPWLM as the separation of
time scales between the mRNA dynamics and protein dynamics
becomes larger (e large). In Fig. 17, we plot numerical simulations
of the CPWLM and CNM for e ¼ 10 together with numerical
simulations of the SPWLM. The other parameters are the same for
all the three models. One can see the significant qualitative
difference between the CPWLM and the other two models. The
reason is the occurrence of sliding motion.4 Fig. 17(b) illustrates
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how sliding motion is present in the CPWLM. Namely the mRNA
concentrations raðtÞ; rbðtÞ are sliding. The CPWLM predicts
oscillations where the CNM and SPWLM both predict a stable
equilibrium (with the difference that the SPWLM predicts the
focus-like equilibrium).
7. Effects of the discretization

To investigate the dynamics of the discrete-time model in (24)
obtained by discretizing the SPWLM, we compute the value of the
parameter a corresponding to the value of da and db used to obtain
Fig. 12. Specifically, we set a ¼ 0:9048. Fig. 18 shows the evolution
of the network predicted by this model. We observe a periodic
solution which does not match the evolution predicted either by
the CPWLM or the SPWLM (see Fig. 12).

Moreover, when the model parameters are varied, we observe
the onset of more complex behaviour as summarized in Fig. 19
where a bifurcation diagram is shown, obtained by varying the
parameters a and y. Each colour corresponds to a different
periodic solution that exists for a pair of values of the parameters
a; y. As it is apparent from the figure, the discrete-time model
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exhibits a large variety of periodic solutions with different
periodicity that are not necessarily associated to realistic
dynamics of the gene network. Some of these periodic orbits,
were also confirmed analytically as shown in Appendix B and
independently in Coutinho et al. (2006). The important difference
between the discretized model with the continuous time models
is that it predicts only oscillatory behaviour. Namely, for any range
of parameters the discrete model always predicts oscillations of
the protein concentrations, in contradiction with all the
continuous models, where we saw that oscillations exist only in
some parameter regions (CNM, CPWLM) or they are totally absent
(SNM, SPWLM). Finally, note that the predictions of the
discretized model are highly affected by the time-step chosen
and the parameter values being set. Therefore, our analysis
indicates that such an approach can be unviable to capture
experimentally observed behaviour.
8. Discussion

The results presented in the paper suggest that while some
qualitative behaviour is preserved when making different
assumptions, the quantitative predictions of different models
can be surprisingly different. We expect this to be more the case
when larger networks are considered.

An important issue is then whether qualitative or quantitative
predictions are needed. In some cases, using more abstract models
than PWL models can be an acceptable option. For example, in
Davidich and Bornholdt (2008) and Chaves et al. (2006) Boolean
network models are used to describe the yeast cell-cycle control
network and the Drosophila patterning network, respectively. It is
shown that, under certain circumstances, the predicted behaviour
is qualitatively similar to that obtained by using an ODE model of
the network. The problem is when quantitative predictions are
needed. For instance, Mochizuki (2005) shows that the predic-
tions of Boolean models can become unrealistic or too complex for
larger networks when compared to those of the corresponding
ODE models.

Unfortunately, there is not yet a unifying mathematical
framework to decide what the best modelling approach to use is
and what assumptions can be safely made to simplify the network
of interest. The big challenge is how to keep the model simple,
without risking missing important features of the real system.
This paper offers some guidelines, highlighting the unwanted
effects of some of the most commonly made assumptions when
modelling biological networks.

We wish to emphasize that our findings apply to other network
structures and larger networks. For example, in large networks
one can use the mRNA quasi-steady-state assumption in order to
simplify the model. As this paper showed, this assumption is
only possible for those genes with significantly different time
scales for their corresponding mRNA and protein. Also, in the
case of the PWL approximation, CPWLMs of larger networks
will be large-scale extended piecewise linear systems whose
dynamics is bound to be affected by the presence of sliding
motion which can cause the predictions of the models to be
further away from realistic expectations. We believe that the PWL
approximation can only be made in combination with the mRNA
quasi-steady-state assumption. In that case, if the transcription
dynamics are step-like, then the Hill function might be replaced
by a PWL function.

A full understanding of the impact of various modelling
assumptions on generic network structures is a pressing open
problem that remain to be addressed.
9. Conclusions

We discussed the modelling of gene regulatory networks using
different approaches by means of a representative two-gene
network. We looked at the effects on the dynamics of some key
assumptions often made in the literature on modelling gene
networks.
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After deriving a complete nonlinear ODE model describing
both mRNA and protein concentrations, we considered a simpli-
fied model obtained by considering a quasi-steady-state assump-
tion on the mRNA dynamics. We then studied the existence and
stability of equilibria in both the complete and simplified
nonlinear models. We proved that, while the complete nonlinear
model shows the occurrence of a Hopf bifurcation leading to
persistent oscillatory behaviour, when the simplified nonlinear
model is considered this phenomenon disappears. We then
investigated in greater detail the effect on the model behaviour
of taking the quasi-steady state assumption on the mRNAs. By
considering an appropriate slow–fast model, we showed that the
predictions of the SNM and the CNM become significantly
different as the time scales of the mRNA and proteins are varied
with the Hopf bifurcation point disappearing at infinity when the
quasi-steady-state approximation is made.

Another important issue we looked at is the choice of the Hill
coefficients which has two important consequences on the model
framework used and its predictions. Specifically, we proved that,
under certain conditions, oscillatory behaviour is exhibited by the
network model if the Hill coefficients are sufficiently high. In
particular, we found that in the CNM a Hopf bifurcation is only
possible if the Hill coefficients values are above a certain threshold (in
our example nanbZ4). Moreover, if the Hill coefficients are large
enough then it is possible to approximate Hill kinetics terms with step
functions.

This approximation gives rise to PWL models of the network
that we further discussed and analyzed. In particular, after
presenting the complete PWL model of the network of interest,
we discussed the ensuing dynamics showing the presence of
solutions such as a high-frequency switching behaviour which is
not always close to the predictions of the nonlinear models.
Indeed, we found that the PWL and smooth models give the same
qualitative and quantitative predictions if the Hill coefficients are
chosen to be above a certain threshold value dependent on the
parameter region of interest.

Finally, we investigated discrete-time models recently pre-
sented in the literature. We showed that such models can be
obtained by discretizing the continuous-time ones. The resulting
model, though, were shown to predict spurious dynamics, often
unrealistic for the network of interest.

Our analysis suggests that particular care must be taken when
modelling gene regulatory networks. In particular, special care must
be taken in considering the assumptions discussed in this paper.
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Appendix A. A generalization in R2

The lack of persistent oscillations in the SNM can be generalized to
a wider class of two-gene networks. In particular, we prove that any
model of a two-gene network, under the quasi-steady-state mRNA
assumption and no self-regulation,5 cannot exhibit a limit cycle
associated with persistent oscillations of the gene products and
protein concentrations. The key is the so-called Bendixson criterion
(Strogatz, 2001), for planar nonlinear systems (see also Tyson, 1978;
Edelstein-Keshet, 1988 for a review of previous results).

Consider an ODE model of a two-gene network, with neither of
the two genes being self-inhibited or self-activated, of the form

_pa ¼ kafaðpbÞ � dapa;

_pb ¼ kbfbðpaÞ � dbpb: ð69Þ

In order to apply Bendixson’s criterion, we must calculate the
divergence of the vector field _p ¼ ð _pa; _pbÞ. Since gene a is not self-
regulated, the function fa depends only upon pb, and not on pa. Hence
the partial derivative @faðpbÞ=@pa will be zero. The same applies to the
partial derivative @fbðpaÞ=@pb. Therefore:

r � _p ¼ �ðda þ dbÞ: ð70Þ

Hence the divergence of _p is always negative. Immediate application
of Bendixson’s criterion then shows that no limit cycles are possible
for systems of the type described by Eq. (69).
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Fig. 20. Shaded regions correspond to the regions of existence and stability of the

balanced period-4n a)n ¼ 1, b)n ¼ 2, c)n ¼ 3.
Appendix B. Periodic orbits in the discrete-time model

To illustrate the analytical procedure needed to prove the existence
of periodic solutions for the activation–inhibition network, we look
now at a representative periodic solution. We assume that ya ¼ yb ¼

y and we focus in the case of balanced periodic orbits, which are
periodic orbits which have equal number of iterations, n, in each of
the four regions determined by the inequalities ðpa4y, pb4yÞ, ðpa4y,
pboy, paoyÞ, ðpb4yÞ and ðpaoy, pboyÞ. Specifically it is possible to
prove the following statement which was also independently
presented in Coutinho et al. (2006) (Fig. 20).

Proposition 1. For a 2 ð0;1Þ and y 2 ð0;1Þ, a balanced period 4n

exists if and only if:

max
an

1þ a2n
;
1� an�1 þ a2n

1þ a2n

� �
ryomin

1� an þ a2n

1þ a2n
;
an�1

1þ a2n

� �
:

ð71Þ

Moreover, the periodic solution is always stable in its interval of

existence.

Proof. Let p1; p2; . . . pn; . . . ; p2n; . . . p3n; . . . ; p4n the iterates of the
orbit of interest. Clearly this period 4n exists if and only if there
exists a fixed point sequence:

p1oy; . . . ; p2noy; p2nþ1Zy; . . . ; p2nZy ð72Þ

of the map (24), where

pj ¼ apj�1 for all 2rjrnþ 1; ð73Þ

pi ¼ api�1 þ 1� a for all nþ 2rir3nþ 1; ð74Þ

pk ¼ apk�1 for all 3nþ 2rkr4n; ð75Þ

p1 ¼ ap4n: ð76Þ
5 There is no self-loop in the network; no proteins can regulate the gene that

encoded them.
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By back- and forward-substitution of Eqs. (73)–(76) we can find p1:

p1 ¼
an

1þ a2n
: ð77Þ

Because 0rar1 Eq. (73) imply that p1Zpj for all 2rjrnþ 1.

Additionally, Eq. (74) imply that p2nZpi for all nþ 2rir2n� 1. In
other words, if p1ry and simultaneously p2nry, then ptry for all
1rtr2n. Similarly, it can be shown that if p4nZy and simultaneously
p2nþ1Zy then prZy for all 2nþ 1rrr4n. Hence, compatibility
conditions (72) will hold if and only if:

p1ry and p2nry; ð78Þ

p2nþ1Zy and p4nZy: ð79Þ

From (77) we can easily derive the solution of each pi, 81rir4n.
Specifically, for p2n; p2nþ1; p4n we have

p2n ¼
1� an�1 þ a2n

1þ a2n
; p2nþ1 ¼

1� an þ a2n

1þ a2n
;

p4n ¼
an�1

1þ a2n
: ð80Þ

Let a1 the root of equation p4n � p2n ¼ 0 or 1� 2an�1 þ a2n ¼ 0.
Then it can be shown that for aZa1 there are real values of a that
satisfy Eq. (71). Now let, a2 the root of equation 1� an�1 � anþ

a2n ¼ 0 (which is equivalent to both equations p2n � p1 ¼ 0 and
p4n� p2nþ1). It can be easily shown that for 0rara2 we have
p2nZp1 and p4nrp2nþ1. Therefore, the balanced periodic orbit
with compatibility conditions (72) will exist if and only if max (p1,
p2n)ryomin (p2nþ1, p4n). Additionally, the periodic orbit will be
stable because 0rar1. &.
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