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1 Carbon catabolite repression in bacteria

All free-living bacteria have to adapt to a changing environment. Speci�c regulatory systems
respond to particular stresses, but the most common decision bacteria have to make is the choice
between alternative carbon sources, each sustaining a speci�c, maximal growth rate. Many
bacteria have evolved a strategy that consists in utilizing carbon sources sequentially, in general
favouring carbon sources that sustain a higher growth rate. As long as a preferred carbon source is
present in su�cient amounts, the synthesis of enzymes necessary for the uptake and metabolism
of less favourable carbon sources is repressed. This phenomenon is called Carbon Catabolite

Repression (CCR) and the most salient manifestation of this regulatory choice is diauxic growth
(Figure 1) [5, 7, 12, 16, 18, 25, 26].

CCR, occupying such a central position in the regulation of bacterial metabolism, has been
intensely studied for more than 50 years. The underlying regulatory system involves a complex
interplay between metabolism, signaling by metabolites and proteins, and the regulation of gene
expression, in the context of global constraints on cell physiology. In order to explain how the
observed behavior of a bacterial cell emerges from networks of biochemical reactions and regula-
tory interactions, and predict the response of this system to speci�c experimental perturbations,
mathematical models have been found useful in systems biology [1, 11].

A variety of models has been proposed for CCR, focusing on di�erent aspects of the phe-
nomenon. Here, we review these di�erent modeling approaches and illustrate their capacity to
predict the hallmark feature of CCR, diauxic growth. Following [12, 13], we propose a highly
simpli�ed representation of diauxic growth, in order to explain and compare the salient features
of the models that have been proposed in the literature. We will see that to some extent, the
overall logic of diauxic growth can be captured by all modeling approaches.

2 Model de�nition

Bacterial metabolism is conventionally viewed as a system of biochemical reactions, converting
external substrates into biomass and by-products. This system can be modelled by coupled ordi-
nary di�erential equations (ODEs) describing how the reactions, occurring at a speci�c rate vj ,
change the metabolite concentrations xi over time. x and v represent the vectors of metabolite
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Figure 1: Carbon catabolite repression and diauxic growth [12]. When in the presence of two
di�erent growth substrates, the bacterium �rst metabolizes the substrate sustaining the highest growth
rate. After exhaustion of the preferred substrate, the enzymes necessary for the utilization of the second
substrate are synthesized, leading to a temporary growth lag, after which slower growth resumes on the
second substrate. The experimental data for glucose (blue circles), lactose (blue squares) and biomass
(red circles) are taken from [3]. Carbon catabolite repression refers to the di�erent mechanisms that
bring about the above-mentioned changes in enzyme and metabolite levels and metabolic �uxes.

concentrations and reaction rates, respectively. The stoichiometry matrix N couples the intracel-
lular metabolites to the reactions, by indicating which metabolites are produced and consumed
in a reaction and at which relative ratios:

ẋ = N · v, x(0) = x0. (1)

A simple metabolic network fueling growth from two di�erent substrates, shown in Fig-
ure 2, can be written in the above form by de�ning x = [X1, X2,M ]′ [mmol gDW−1], v =
[v1, v2, v3, v4, v5]

′ [mmol gDW−1 h−1], and

N =

1 −1 0 0 0
0 0 1 −1 0
0 4 0 1 −10

 . (2)

Notice that at this level of description the dependency of the reaction rates on metabolite and
enzyme concentrations is not explicitly taken into account. By convention, the concentrations are
expressed in units mmol gDW−1, bearing in mind that the volume of a growing cell population
is usually assumed to be proportional to the quantity of biomass, expressed in units gram dry
weight (gDW).

Exercise 1 Write down the reactions of the system corresponding to N . Which of the two

substrates is the richest for supporting growth?

The model for internal cellular processes is coupled to di�erential equations describing sub-
strate uptake and biomass growth over time:
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Figure 2: Simple metabolic network for growth on two di�erent substrates. The concentrations
of the substrates in the growth medium are denoted by S1 and S2 [mmol L−1], wherease the concentrations
of the metabolites in the cell population are denotedX1, X2, andM [mmol gDW−1]. The uptake reactions
occur at rates v1 and v3, the internal reactions at rates v2 and v4, and the conversion of intermediary
metabolite M into biomass at concentration B [gDW L−1] at a rate v5 [mmol gDW−1 h−1]. The latter
reaction gives rise to a growth rate µ [h−1].

Ṡ1 = −v1 ·B, S1(0) = S1,0, (3)

Ṡ2 = −v3 ·B, S2(0) = S2,0, (4)

Ḃ = β · v5 ·B, B(0) = B0, (5)

where S1 and S2 [mmol L−1] are the substrate concentrations and B [gDW L−1] is the biomass
concentration. Notice that the extracellular concentrations of substrates and biomass have a
di�erent unit than the intracellular concentrations appearing in Eq. 1, since they have a di�erent
reference volume (the volume of the growth medium [L] rather than the volume or biomass of
the growing cell population [gDW]). Because of this di�erence in units, the rate of incorporation
of M into the biomass needs to be multiplied with the conversion constant β [gDW mmol−1].

Let Vmedium [L] and Vpopulation [L] denote the volume of the medium and the cell population
growing in the medium, respectively. The relations between the units can then be expressed as
follows:

α · Vpopulation = B · Vmedium, (6)

where α is the constant biomass density in the growing cell population.

Exercise 2 What is the unit of α? Explain the meaning of Eq. 6 in words.

The growth rate of the cell population is de�ned as

µ =
V̇population
Vpopulation

. (7)

Exercise 3 Show with Eqs 3-7 that µ = β v5, and therefore that Eq. 5 can be rewritten as:

Ḃ = µ ·B, B(0) = B0, (8)
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3 Dynamic �ux balance analysis

At steady state, Eq. 1 becomes
0 = N · v. (9)

This �ux balance equation is underdetermined, as there are generally more reactions than metabo-
lites. For example, the stoichiometry matrix of Eq. 2, has three rows (metabolites) and �ve
column (reactions). Additional constraints on the �uxes can be de�ned, based on measurements
of uptake or secretion �uxes, limits on enzyme capacity, or thermodynamic constraints. Flux

balance analysis aims at selecting solutions from the �ux cone of the equation that optimize a
certain criterion, such as biomass production or ATP production [20, 21].

While classical �ux balance analysis considers the network at one speci�c (quasi-)steady
state, dynamic �ux balance analysis allows the (quasi-)steady state to vary over time as a func-
tion of changing substrate concentrations and other growth conditions. At each time-point,
the metabolic �uxes are de�ned as the solution(s) of a �ux balance optimization problem and
the concentrations of external substrates, products, and biomass evolve in accordance with the
optimized exchange �uxes [15].

In other words, when describing the dynamics of the system by Eqs 3-5, at each time instant
t the following optimization problem is solved:

Find vopt(t) = argmax
v(t)

β · v5(t), (10)

such that v(t) satis�es 0 = N · v(t) and the following inequality constraints:

−∞ < v1(t) ≤ k1 ·
S1(t)

K1 + S1(t)
, (11)

−∞ < v2(t) <∞, (12)

−∞ < v3(t) ≤ k3 ·
S2(t)

K2 + S2(t)
, (13)

−∞ < v4(t) <∞, (14)

0 ≤ v5(t) <∞, (15)

where k1, k2 [mmol gDW−1 h−1] are kinetic rate constants and K1,K2 [mmol gDW−1] half-
saturation constants. The solution of this problem is then used as an external input in the
system of Eqs 3-5 by setting at each time instant v(t) = vopt(t).

Exercise 4 Run the dynamic �ux balance model using the �le dynamicFBASimpleModel2.m. The

�le initializes the COBRA toolbox, declares the model de�ned by the equations in the previous

section and some simulation parameters, and launches the function dynamicFBA of the COBRA

toolbox. Does dynamic FBA predict diauxic growth? How do you explain this result?

Exercise 5 Which regulatory constraint could be added to the model to allow dynamic FBA to

predict diauxic growth?

4



4 Kinetic modeling

Flux balance analysis allows predictions of the network dynamics to be made from very little
information, aided by the assumption that some objective function, for example growth rate, is
optimized. The approach has several limitations though. First, it may not be clear what is the
most appropriate choice for an objective function [19, 22, 23, 24]. Second, the �uxes are chosen
as the free variables, but this does not make it possible to explicitly model regulatory interactions
and predict metabolite concentrations.

An alternative approach is the use of kinetic models [8]. Kinetic models take into account
kinetic expressions for the reaction rates vj as a function of the intra- and extracellular concen-
trations of metabolites, enzymes, and cofactors, thus providing a full description of the networks
dynamics. In order to transform the model of the simple diauxic growth network of Fig. 2 into
a kinetic model, we need to de�ne the reactions rates v as a function of the metabolite concen-
trations x, i.e., v ≡ v(x). Here, we will assume Michaelis-Menten kinetics for the uptake rates
and simple �rst-order mass-action kinetics for the intracellular metabolic reactions. This gives
rise to the following equations:

v1(S1) = k1 ·
S1

K1 + S1
, (16)

v2(X1) = k2 ·X1, (17)

v3(S2) = k3 ·
S2

K2 + S2
, (18)

v4(X2) = k4 ·X2, (19)

v5(M) = k5 ·M, (20)

where k1, . . . , k5 [mmol gDW−1 h−1] are kinetic rate constants and K1,K2 [mmol gDW−1] half-
saturation constants.

Exercise 6 Run the kinetic model stored in metabolicModel.m by means of the �le simulate-

MetabolicSystem.m. Compare the results with those obtained using dynamic FBA.

A possible regulatory interaction favoring diauxic growth is the repression of the uptake of
secondary carbon sources when the preferred substrate is available. In bacteria such regulatory
interactions have been identi�ed and are known as inducer exclusion [5, 7, 12]. For instance,
in E. coli inducer exclusion involves the phosphotransferase system (PTS), responsible for the
uptake of glucose and other carbon sources. In the presence of glucose, the preferred carbon
source, the glucose-speci�c component of the PTS inhibits the activity of several transporters
and enzymes, thus preventing the uptake and metabolism of alternative carbon sources. Fig. 3A
is a schematic illustration of the e�ect of this regulatory interaction.

Exercise 7 Adapt the kinetic model of the previous exercise so as to integrate the regulatory

interaction in Fig. 3A. Call the resulting �les simulateMetabolicSystemRegulation.m and

metabolicModelRegulation.m. Does the model predict diauxic growth? Test the sensitivity

of the model predictions to the values of the parameters characterizing the uptake inhibition in-

teraction.

5



S1

S2

X1

X2
M B

μ S1

S2

X1

X2
M B

μ

E1

E3

v3

v1

v4

v2 v5

A B

Figure 3: Regulatory interactions responsible for diauxic growth. A Regulation on the metabolic
level. When the preferred substrate (X1) is present, the uptake of the secondary substrate (S2) from the
growth medium is inhibited. B Regulation on the gene expression level. When the preferred substrate
(X1) is present, the expression of the gene encoding the protein E3 involved in the uptake of the secondary
substrate S2 is inhibited. E1 is required for the uptake of X1, but we assume that it is constitutively
expressed here. For simplicity, we ignore the enzymes catalyzing the other reactions (v2, v4, v5).

Another level of regulation of diauxic growth involves the enzymes catalyzing metabolic reac-
tions and the proteins making up substrate transport systems. In many bacteria, the expression
of genes encoding enzymes and transporters necessary for the assimilation of secondary carbon
source is repressed when the preferred carbon source is available [5, 7, 12]. In E. coli, this again
involves the glucose-speci�c component of the PTS, called EIIAGlc. When glucose is available,
EIIAGlc inhibits the enzyme producing the signalling molecule cAMP, required for the expression
of genes involved in the uptake and metabolism of alternative carbon sources, such as lactose
or arabinose. Fig. 3B shows the corresponding regulatory interaction in the diauxic growth net-
work. For simplicity, we only introduce genes encoding the transporters, called E1 and E3 in
the �gure, and ignore the genes that code for the enzymes associated with the other metabolic
reactions.

In order to account for gene regulation in diauxic growth, we adapt the equations de�ning
the reaction rates v1 and v3 given above:

v1(S1, E1) = k1 · E1 ·
S1

K1 + S1
, (21)

v3(S2, E3) = k3 · E3 ·
S2

K2 + S2
, (22)

where E1 and E3 [mmol gDW−1] are the enzyme concentrations. We use the same parameters
as in Eqs 16 and 18, but notice that the units, and therefore the meaning, are di�erent (h−1

instead of mmol gDW−1 h−1).
The full kinetic model also needs equations to describe the dynamics of the enzyme concen-

trations E1 and E3:

Ė1 = c1 − g1 · E1, E1(0) = E1,0, (23)

Ė3 = c3 ·
L2
2

L2
2 +X2

1

− g3 · E3, E3(0) = E3,0, (24)
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where c1 and c3 [mmol gDW−1 h−1] are protein synthesis constants, g1 and g3 [h−1] protein
degradation constants, and L2 [mmol gDW−1] a regulation constant. The �rst term in the right-
hand side of Eq. 24 accounts for the regulation of the expression of the gene encoding E3, or
more precisely the synthesis of the protein E3.

Exercise 8 Run the kinetic model stored in metabolicModelGeneRegulation.m by means of

the �le simulateMetabolicSystemGeneRegulation.m. Compare the results of regulation on the

metabolic and gene expression level. What is the e�ect of increasing or decreasing the exponent

2 (the cooperativity constant) in the expression of the regulation of E3 synthesis by X1 (Eq. 24)?

What happens when the substrate is absent from the growth medium?

5 Modeling integrated cellular networks: metabolism, gene ex-

pression, and growth

The previous section showed that in order to obtain diauxic growth for the simple network of
Fig. 2, it is necessary to introduce regulatory interactions. We considered both regulation on
the metabolic and genetic level, reminiscent of actual regulatory interactions that have been
identi�ed in bacteria. In all of the above models, the growth rate is taken proportional to the
rate of the biomass reaction consuming precursor metabolites M. However, this approach does
not relate the growth rate to the molecular contents of the cell making up the biomass (enzymes,
transporters, metabolites, . . .). Moreover, it does not take into account that the enzymes and
transporters necessary for the assimilation of substrates for growth are themselves produced from
precursor metabolites, thus ignoring an important feedback loop in the system. Recently, there
has been a regained interest in this global control of cellular behavior [2, 6, 10, 9].

Fig. 4 is an extension of the simple diauxic growth network of Fig. 3B, addressing some of
the issues outlined above. In particular, it shows that the proteins E1 and E3 are synthesized
from the precursor metabolite M, through reactions with rates r1 and r3, respectively, and that
the proteins are diluted by growth. We assume that the synthesis of E1 and E2 costs 5 molecules
of M per enzyme.

The above considerations result in the following general form of the kinetic model

ẋ = N · v(x)− µx, x(0) = x0, (25)

where the additional term in the right-hand side represents growth dilution of the intracellular
metabolites and proteins.

Exercise 9 De�ne X = x · B and V = v · B. What do these variables represent? Bearing in

mind that Ẋ = N · V , derive Eq. 25.

For the example of Fig. 4, we have x = [X1, X2,M,E1, E3]
′, v = [v1(S1, E1), v2(X1), v3(S2, E3),
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Figure 4: Global control of network responsible for diauxic growth. The simple network of
Fig. 3B is extended with additional reactions describing how precursor metabolites M are used for the
synthesis of proteins, in particular the transport proteins E1 and E3. The scheme also indicates that
the growth rate in�uences the concentration of E1 and E3 through growth dilution. For simplicity, the
interactions have been omitted for the enzymes catalyzing the other reactions (v2, v4, v5).

v4(X2), r1(M), r3(M)]′, and

N =


1 −1 0 0 0 0
0 0 1 −1 0 0
0 4 0 1 −5 −5
0 0 0 0 1 0
0 0 0 0 0 1

 . (26)

In this model we have ignored the degradation of the enzymes, which is often negligible in
comparison with growth dilution due to the high stability of most proteins in bacterial cells
[14, 17]. Moreover, the biomass reaction of the previous sections is no longer necessary here,
since we explicitly model the demand for precursors through their incorporation in proteins.

Assuming further that protein synthesis from M is a �rst-order process, we have

r1(M) = c1 ·M (27)

r3(M) = c3 ·
L2
2

L2
2 +X2

1

·M. (28)

Notice that the constants c1 and c3 [h
−1] do not have exactly the same meaning and units as in

Eqs 23 and 24, but for notational e�ciency we keep the same symbols. The rate equations for
v1(·), . . . , v5(·) are the same as used in previous sections.

The explicit modeling of the incorporation of metabolites in proteins also allows for a more
principled way of de�ning the growth rate, by setting the biomass equal to the total mass of
molecules [4]:

B = (γ1 ·X1 + γ2 ·X2 + γ3 ·M + γ4 · E1 + γ5 · E3) · α · Vpopulation/Vmedium, (29)

where γ1, . . . , γ5 [g mmol−1] are the molecular weights. Consistent with the previous model
parameters, we set γ1 = 4, γ2 = 1, γ3 = 1, γ4 = 5, and γ5 = 5. From the above de�nition of the
biomass, we obtain the following expression for the growth rate:
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µ =
Ḃ

B
=

4v1 + v3
4X1 +X2 +M + 5E1 + 5E3

. (30)

Exercise 10 How can you explain Eq. 29? Derive Eq. 30 from Eq. 29 and the extended model

of Eqs 25 and 26.

Exercise 11 Extend the model so as to explicitly describe the dependency of the reaction rates

v2 and v4 on the concentrations of enzymes E2 and E4, respectively. Add di�erential equations

for the dynamics of these enzyme concentrations.

The extended model can be used to simulate diauxic growth, including the synthesis of
enzymes from precursors.

Exercise 12 Run the kinetic model stored in metabolicModelGeneRegulationGrowthControl-

NewBiomass.m by means of the �le simulateMetabolicSystemGeneRegulationGrowthControl-

NewBiomass.m. Compare the results with those obtained using the models in Section 4. In par-

ticular, which di�erences do you observe for enzyme concentrations that are initially 0? Can you

explain the di�erences?
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