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INRIA Grenoble - Rhone-Alpes and IBIS

« |IBIS: systems biology group at INRIA/Université Grenoble-Alpes

— Analysis of bacterial regulatory networks by means of models and experiments
— Biologists, computer scientists, mathematicians, physicists, ...
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http://team.inria. fr/ibis — II]IS
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Bacteria

« Bacteria were first observed by Antonie van Leeuwenhoek,
using a single-lens microscope of his own design

van Leeuwenhoek A (1684),
Philosophical Transactions
(1683—1775) 14: 568-574
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www.euronet.nl/usersiwamar/leeuwenhoek.html.
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http//fcommons.wikimedia.org’

"In the morning | used to rub my teeth with salt and rinse my mouth with water and after
eating to clean my molars with a toothpick.... | then most always saw, with great wonder,

that in the said matter there were many very little living animalcules, very prettily a-
moving. The biggest sort had a very strong and swift motion, and shot through the water

like a pike does through the water; mostly these were of small numbers."
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Bacteria are complex living systems

« Bacterial cells are complex
biochemical and biophysical
machines
— Wide range of shapes, typically

0.5-5 um in length
— 106 bacterial cells in 1 ml of fresh
water

— About as much bacterial cells as
human cells in human body

Goodsell (2010), The Machinery of
Life, Springer, 2nd ed.
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Bacteria are complex living systems

« Bacterial cells are complex

ool\"/

biochemical and biophysical 09,
. N /NN
machines J AR ?‘ & ﬁ:/’
: —— It Al
- Bacteria possess R pernre T Y = b
characteristics shared by ™" wommotn, sy oy yon
most living systems: ,,,,
J Y o=00 -
— Metabolism ——— species
: znmfuon wtrﬁ?r&mmwmmmo {- call
— Growth and reproduction Rew ool undor 1ha dreckon of romisting Colh
— Differentiation o -
— Communication °=:>¢
— Evolution S&“@“ﬁéﬁh"ﬁmi’”W“

Formallondanewcellsmmraswhasaspora relationships between cells.
usually as part of a cellular ¥fe cycle.

Madigan et al. (2003), Brock Biology of
Microorganisms, Prentice Hall, 10th ed.
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Bacterial growth and metabolism

 Bacteria are unicellular organisms geared towards
growth and division
Escherichia coli cells have doubling times up to 20 min

Stewart et al. (2005), PLoS Biol., 3(2): e45

 Metabolism fuels growth by production of energy and building
blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, ...

rd
Ve UNIVERSITE
LA ' Grenoble
2 Alpes




Bacterial growth and metabolism
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Fischer et al. (2004), Anal. Biochem., 325(2):308-16
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Bacterial growth and metabolism

Glucose co,
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Bacterial growth and metabolism

Glucose co,
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Bacterial growth and metabolism
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Bacterial growth and metabolism

e Bacterial metabolism is flexible, allowing cells to grow on
different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose
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Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

« Adaptation of bacterial physiology to different carbon sources
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Growth transition and metabolism

« Adaptation to different carbon source involves changes in
metabolic fluxes

Different flux distribution in central metabolism of E. coli during
growth on glucose and galactose
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Growth transition and metabolism

« Adaptation to different carbon oters

UDPG

source involves adjustment of

other central carbon

metabolite concentrations

hexose-phosphate

glutamate

Different metabolite concentrations in
E. coli cells growing on glucose and s i |
acetate glutathione

other redox
NAD+

[l Amino Acids
Nucleotides
NAD(P)(H)
Glutathiones

Central Carbon

OEOo0OM

other nucleotides
CTP - Other
TP aspartate
GTP uUtP ATP valine
glutamine

alanine
other amino acids

Table 1 Intracellular metabolite concentrations in glucose-fed, exponentially growing E. coli

Metabolite mol |1-1 Metabolite mol |1
Glutamate 9.6 x10-2 UDP-glucuronate (51) 5.7 x 104
Glutathione 1.7 x 10-2 ADP 5.6x 104
Fructose-1,6-bisphosphate 1.5x10-? Asparagine (52) 5.1x10-*
ATP 9.6x 103 o-Ketoglutarate 4.4 %104
UDP-N-acetylglucosamine (29) 9.2x 1073 Lysine (53) 41x10°*
Hexose-P2 8.8x10-3 Proline (54) 3.9x10-*
UTP (30) 8.3x10-3 dTDP (55) 3.8x10-*
GTP (31) 4.9x10-3 Dihydroxyacetone phosphate 3.7x104
dTTP 4.6 x 103 Homacysteine (56) 3.7x 104
Aspartate 4.2%10°3 CMP (57) 3.6x10°*
Bennett et al (2009)’ Nat Chem B|O|, 5(8)593_9 Valine (32) 4.0x 103 Deoxyribose-5-P (58) 3.0x10-%
Glutamine 3.8x10-3 Isoleucine (59) +leucine (60) 3.0x10%
6-Phosphogluconate 3.8x 1073 AMP 2.8x10°*
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Growth transition and gene expression
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Growth transition and gene expression

[V
@

» Adaptation to different carbon source
Involves genome-wide reorganisation
of gene expression
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Traxler et al. (2006), Proc. Natl. Acad. Sci. USA, 103(7):2374-9 sy rrrr T
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Adaptation on multiple levels

* Adaptation to different carbon source
involves adjustments on multiple w%";«
levels at the same time! °”%§::T RN

Parallel measurement of enzyme and *""J,lglfn;ﬂm r;”';fgqagm
al 1 a

metabolite concentrations, and metabolic ——
fluxes in a variety of experimental T

conditions [ €

Ishii et al. (2007), Science, 316(5284):593-7 pe’:_r ], ﬁ
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Adaptation on multiple levels

anion

* Adaptation to different carbon source
Involves adjustments on multiple
levels at the same time!
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General question on cellular adaptation

« Cells are capable of responding to a variety of changes In
their environment by adapting their physiology
Change in carbon source, starvation, population density, ...
* On the molecular level, these responses involve adjustment
of metabolism and gene expression
Cellular concentrations of metabolites, enzymes, transcription factors,

* Question: how does cell coordinate these adaptive
responses?




Coordination of adaptative responses

« Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... o
— ... operating on different time- g Metabolic master regulation
scales... / —=

— ... Involving numerous feedback
loops across levels

intéractio

Nom F

ulation

Protein  |Tr@nscriptional

production

pa

Kotte et al. (2010), Mol. Syst. Biol., 6: 355
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No global view on network functioning

« Coordination of adaptative responses of bacterial cell achieved
by large and complex regulatory networks

« Abundant knowledge on biochemical mechanisms underlying
Interactions between network components

« Accumulation of data on multi-level response of network to
external perturbations

Metabolic fluxes and cellular concentrations of metabolites, enzymes,
transcription factors, signalling molecules, ...

 However, global view on functioning of entire network is
difficult to achieve and largely absent today




Mathematical models and systems biology

* Regulatory networks are complex nonlinear dynamical
systems, evolving on different time-scales

 Challenge: can mathematical models and computer tools
help us understand how these systems function?

— Integration of interaction structure and heterogenous data sources
Into mathematical models
— Use of models to analyse and predict dynamical behaviour of system

— Emergence of new discipline: systems biology...

Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press
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Historical note

e Systems biology, and more particularly the mathematical
modeling and computer simulation of biochemical reaction
networks, have a long history

Westerhoff and Palsson (2004), Nat. Biotechnol.,22(10):1249-52

« Simulation of metabolic pathways (glycolysis)

Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98

* Modeling of gene regulatory networks ‘©
|

Goodwin (1963), Temporal Organization in Cells, London
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Mathematical modeling of biochemical
reaction networks

* Well-established framework for modeling of biochemical

reaction networks using ordinary differential equation
(ODE) models

« General form of ODE models of biochemical reaction

networks
" = N v(x)

— Concentration variables z € R}
— Reactionrates v : R} — R?
— Stoichiometry matrix N &€ Z™*¢

 Various forms of kinetic rate laws: mass-action, Michaelis-
Menten, Hill, Monod-Wyman-Changeux, ...




Example of network modeling

* Model of uptake of carbon sources (glucose, lactose,

glycerol, ...) by E. coli

— Several dozens of equations and more than
many of them unknown or unreliable

a hundred parameters,

— Mostly metabolic modules | units
ElNA — <+ cAMP.Crp
l-3<|=an ~— Lacl
cAMP.Crp GalS
l+ l_ @ CI:MP.CI‘D
Unit 6 ___— Unit 3
Galoc—| (@) — Gl - B[4 O b
Glcex
cAMP.Crp  GlpR /
G'Yex— l+ l_ |
| LMIkE GlesP || (ElIA) |«—*_cAMP.Crp
Gyio—(GBR— GyoP—GpD | —| | -~ Mic
T g (ED) |Unit2
ElIA
Unit8 | pn

Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584
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Example of network modeling

« Estimation of parameter values from time-series

measurements of metabolite concentrations on wild-type
and mutant strains

B c * Model has good
100 2 . . ags
” o, predictive capability
% 5o 0 % oY
60 =
= EN
40
20 / 05
0 0
0 tih] 5 0 " 5
x 107 D E F
0.15
4 1
08
2 &)
= o | &os
1 Sos
o 0.2
% . % T . A o Bettenbrock et al. (2005), J. Biol. Chem.,

281(5): 2578-2584
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Issues In mathematical modeling

 Mathematical models are used for explanation, prediction,
and control

* Modeler confronted with several practical problems

— Models of actual networks are large systems of nonlinear ODEs

— Parameter values are generally unknown and difficult to measure
directly

— Reaction mechanisms are often unknown

— Experimental measurements of variables are scarce, noisy, and
Indirect

* This raises issues in model reduction and approximation,
parameter estimation, network inference, data analysis, ...

« But also: issues in experimental data acquisition
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Fluorescent reporter genes

« Use of fluorescent reporter genes
allows expression from host promoter t0 sy sgosergme
be monitored in vivo and in real time

(e.g. a gene’s promoter) luciferase )

- DNA

}

— Different colors (emission peaks): GFP, YFP, — A
RFP, ... : |
. . Amoﬁ:?:;iglsz\?\z::ured
— Reporter genes on plasmids and on (e GFP by luorescence)
chromosome ,
— Transcriptional and translational
reporters

 Library of fluorescent transcrlptlonal
reporter genes in E. coli

c§§§§§§ss

Zaslaver et al. (2006), Nat. Methods, 3(8):623-8
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Microplate readers

Real-time monitoring of gene expression ) M O n |t0 r| n g Of g e n e
Bacteria with I
rep::e?r;av;;ids ' Growth transition due eXp ression on
Strong dilution to glucose exhaustion | t | |
A \ M9, 0.3% glucose / M9, 0.3% glucose / p O p u a I O n eve
| | using fluorescent
2 reporters and
g Ex ial growth
ponential growt au t O m a.t e d
Tiine (it} i
g microplate readers
—809 ‘0 502 1 020
Overnight preculture - Real-time measurements
Data analysis
Growth rate - | |
Promoter k Absorbance and
activities fluorescence data

Berthoumieux et al. (2013), Mol. Syst. Biol., 9:634
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Single-cell microscopy

* Monitoring of gene expression in single cells using
fluorescent reporters, automated time-lapse microscopy,

and image analysis

* Monitoring onset of competence in B. subitilis
Suel et al. (2006), Nature, 440:545-50 &

"
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Single-cell microscopy

* Monitoring of gene expression in single cells using
fluorescent reporters, automated time-lapse microscopy,
and image analysis

* Monitoring onset of competence in B. subtilis
Suel et al. (2006), Nature, 440:545-50
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Single-cell microscopy and microfluidics

« Microfluidic trapping devices for long-term acquisition of

single-cell data
Bennett and Hasty (2009), Nat. Rev. Genet., 10(9):628-38

* Microfluidic devices allow tight control of environmental
perturbations

”~
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Single-cell microscopy and microfluidics

* Microfluidic trapping devices for long-term acquisition of
single-cell data
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* Microfluidic devices allow tight control of environmental
perturbations

Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840
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Objective of course "Modeling of biological
networks"

 Course objective is to learn the modelling of cellular
networks, in particular metabolic networks and gene
regulatory networks

— Both the theoretical foundations and concrete applications to diverse
systems of biological regulation

— Applications will rely on the practical use of computer tools for the
modelling, analysis and simulation of biological networks
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Course program

« Part 1. Systems biology and kinetic modeling (courses 4 h)
— Introduction
— Kinetic modeling of biochemical reaction networks

e Part 2. Metabolic network modeling (courses and practical
10 h)

— Kinetic modeling of metabolism

— Metabolic control analysis (MCA)

— Flux balance analysis (FBA)

— Practical on flux balance analysis (COBRA)
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Course program

« Part 3. Gene regulatory network modeling (courses and
practical 12 h)

— Quantitative modeling of gene regulatory networks

— Qualitative modeling of gene regulatory networks

— Stochastic modeling of gene regulatory networks

— Practical on integrated models of bacterial growth (Matlab)
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Course organisation

« Schedule: courses 2h-3h on Wednesdays

e Credits: 2 units or 50 h:

— Courses: 25 h
— Mini-project: 25 h

e Articles to read, associated with courses
e Contact: Hidde de Jong (Hidde.de-Jong@inria.fr)

 Slides and articles will be made available on course web
site: https://team.inria.fr/ibis, go to Teaching

e Malling list 5BIM and Master students?



mailto:Hidde.de-Jong@inria.fr
https://team.inria.fr/ibis

Mini-projects

« Evaluation based on individual mini-projects
* Mini-projects develop specific aspects of course

* Mini-projects proposed by students or selected from list of
suggestions

* Mini-projects may be literature study, implementation of
algorithm, construction of model, ...

« Results of mini-projects described in report (~10 p)

— Introduction (context, problem/question, approach)
— Methods

— Results

— Discussion and conclusions

* Reports discussed with teacher (feedback)




Mini-projects

« Suggestions for mini-projects:

Whole-cell modeling
Biotechnological applications of flux balance analysis (FBA)
Coarse-grained resource allocation models

Resource balance analysis (RBA) and other resource allocation
variants of FBA

Feedback control of synthetic networks
Model checking of biological networks
Evolution of regulatory networks

Machine learning approaches for the modeling and inference of
biological networks

Acceleration of stochastic simulation using parallel computing

Scaling up the stochastic analysis of regulatory networks using Finite
State Projection (FSP)
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Mini-projects

* Possible topics for mini-projects (cont'd):

Automated design of synthetic networks

Simulation of cellular processes on the single-molecule level
Modelling communities of microorganisms

Large-scale modeling of signaling networks using Boolean logic
Experimental design for predicting the most informative experiments
Tracking individual cells using image analysis and machine learning
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Examples of mini-projects

« Examples of mini-projects last year:

« Boolean model of immmunology network activated by Covid-19 »

« Simulation of E. coli cell division process on the single molecular
level »

« Accélération des simulations stochastiques en utilisant les
capacités de parallélisation des processeurs graphiques »

« Modelisation de communauteés bacteriennes impliguées dans la
methanisation »
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Merci !

team.inria.fr/ibis




