

Practical on integrated models of bacterial growth

Hidde de Jong MICROCOSME INRIA and UGA Hidde.de-Jong@inria.fr

November 23, 2022

MICROCOSME: bacterial systems biology

 MICROCOSME: systems biology group at INRIA/Université Grenoble Alpes in Grenoble

Microbiologists, computer scientists, mathematicians, physicists, ...

https://team.inria.fr/microcosme

- **Objective:** analysis, engineering, and control of the growth of bacteria
 - Specific research problems shaped by **biological questions**
 - Problems often addressed by combination of models and experiments

Overview

- Part 1. Systems biology and kinetic modeling
- Part 2. Metabolic network modeling
- Part 3. Gene regulatory network modeling
 - Quantitative modeling of gene regulatory networks
 - Qualitative modeling of gene regulatory networks
 - Stochastic modeling of gene regulatory networks
 - Practical on integrated models of bacterial growth (Matlab)
- Part 4. Models and data

Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

Fischer et al. (2004), Anal. Biochem., 325(2):308-16

 Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

 Enzymes catalyse individual steps in metabolic network

> Pyruvate kinase transforms phosphoenolpyruvate (PEP) into pyruvate

 Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

- Enzymes produced from information encoded in **genes**
 - *pykF* is gene encoding pyruvate kinase

 Central carbon metabolism breaks down carbon sources for energy production and macromolecular synthesis

Glucose, acetate, lactose, ...

- Enzymes produced from information encoded in genes
 - *pykF* is gene encoding pyruvate kinase
 - Expression of *pykF* regulated by transcription factor Cra

Carbon catabolite repression (CCR)

 Many bacteria have evolved strategy consisting of sequential utilization of carbon sources

In order of decreasing growth rate supported by carbon source

- In presence of preferred substrate, **repression of enzymes** necessary for utilization of less favourable carbon sources
- Carbon catabolite repression (CCR)

Best-known manifestation of CCR: diauxic growth

Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

Carbon catabolite repression (CCR)

 Many bacteria have evolved strategy consisting of sequential utilization of carbon sources

In order of decreasing growth rate supported by carbon source

- In presence of preferred substrate, **repression of enzymes** necessary for utilization of less favourable carbon sources
- Carbon catabolite repression (CCR)

Best-known manifestation of CCR: diauxic growth

Monod, *Recherches sur la croissance des cultures bactériennes*, Hermann, Paris, 1958

Regulation of carbon catabolite repression

- Molecular mechanisms involved in CCR
 - Enzyme induction
 - Inducer exclusion
 - Global regulation by metabolism (cAMP)
- Global changes in cellular physiology
 - Macromolecular composition
 - Activity of transcriptional and translational machinery
 - Stability of mRNA/protein

G

Université 🗖 Grenoble Alpe

Innia

Kremling et al. (2015), Trends Microbiol., 23(2):99-109

Carbon catabolite repression as case study

• CCR is **complex system** cutting across metabolism, signalling, gene expression

Görke and Stülke (2008), Nat. Rev. Microbiol., 6:613-24

Case-study in systems biology!

Kremling et al. (2015), Trends Microbiol., 23(2):99-109

Carbon catabolite repression as case study

Carbon catabolite repression as case study

Basic equations for model

• Intracellular model

$$\dot{x} = N \cdot v, \qquad x(0) = x_0.$$

$$N = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 4 & 0 & 1 & -10 \end{bmatrix}$$

$$x = [X_1, X_2, M]' \text{ [mmol gDW^{-1}]}$$

$$v = [v_1, v_2, v_3, v_4, v_5]' \text{ [mmol gDW^{-1} h^{-1}]}$$

$$(v_1 \times v_2 \times v_4 \times v_5)' \text{ [mmol gDW^{-1} h^{-1}]}$$

Basic equations for model

• Extracellular model

$$\dot{S}_1 = -v_1 \cdot B, \qquad S_1(0) = S_{1,0}, \dot{S}_2 = -v_3 \cdot B, \qquad S_2(0) = S_{2,0}, \dot{B} = \beta \cdot v_5 \cdot B, \qquad B(0) = B_0,$$

N = 1 1 1 1 Xy yiebls 4M, Xz only 1M

Exercise 3

 $\alpha \cdot V_{pop} = B \cdot V_{med}$ $\alpha \cdot V_{pop} = B \cdot V_{med}$ $\mu = \frac{\dot{V}_{pop}}{V_{pop}} = \frac{\dot{B} \cdot (V_{max})}{B \cdot (V_{max})} = \frac{\dot{B}}{B} = B \cdot V_{5}$ ⇒ B=µ.B

Flux balance analysis (FBA)

• Steady state of metabolic network

Nv = 0

Steady-state reaction rates are called **fluxes**

• Constraints on fluxes: upper and lower bounds

$$v^l \le v \le v^u$$

- Bounds on fluxes derived from available information in literature, bounds may be infinite
- For mathematical convenience, all fluxes must be positive $v\geq 0$
- Reversible reaction modeled as pair of irreversible, positive fluxes

Flux balance analysis (FBA)

• Steady state of metabolic network

Nv = 0

- Stoichiometry matrix and constraints define convex space of possible solutions: **flux cone**
- FBA aims at finding solutions(s) maximising or minimising linear combination of fluxes: objective function

$$Z = c^T v \qquad \qquad c \in \mathbb{R}^n$$

• Typical objective functions: biomass production, ATP production, ...

Dynamic flux balance analysis

Dynamics of metabolic network through interactions with
 environment
 Substrate

$$\dot{s} = -v_{ext}(t) \cdot B, \quad s(0) = s_0$$

 $\dot{B} = \mu(t) \cdot B, \quad B(0) = B_0$

- *B* : biomass concentration in medium
- s : substrate concentration in medium
- μ : growth rate
- *v_{ext}* : substrate uptake rate
- Dynamics predicted by means of dynamic FBA
 - Metabolic network at quasi-steady state with respect to environment
 - Computation of exchange rates and growth rate_xby means of FBA at each time-point t
 - Change in substrate concentrations puts bounds on uptake rates

[mmol gow gow Lind] $X = \mathbf{x} \cdot \mathbf{B}$ [mmol gDWh'gDW L'mmol] V = v B $X = N \cdot V \Rightarrow \dot{x} B + x \cdot B = N \cdot v \cdot B$ $\dot{x} = Nv - \frac{\dot{B}}{R}x$

= NV- ux

Exercise 11 $\frac{\dot{B}}{B} = (\chi_1 \dot{\chi}_1 + ... + \chi_5 \dot{\epsilon}_3) \propto \frac{V_{pup}}{V_{mod}} + (\chi_1 \chi_1 + ...) \propto \frac{\dot{V}_{pup}}{V_{mod}}$ (XIX1+..+ YSE3) & VPT $\frac{(\chi_1 \dot{\chi}_1 + ... + \chi_5 \dot{E}_3)}{(\chi_1 \chi_1 + ... + \chi_5 \dot{E}_3)} + \frac{\dot{V}_{pop}}{V_{pop}}$

$$\begin{aligned} &\chi_{1} + \dots + \chi_{5} E_{3} = 4 \chi_{1} + \dots + 5 E_{3} \\ &\chi_{1} \chi_{1} = 4 (V_{1} - V_{2} - \mu \chi_{1}) \\ &\chi_{2} \chi_{2} = 1 (V_{3} - V_{4} - \mu \chi_{2}) \\ &\chi_{3} \dot{M} = 1 \cdot (4 V_{2} + V_{4} - 5 r_{1} - 5 r_{3} - \mu M) \\ &\chi_{4} \dot{E}_{1} = 5 \cdot (r_{1} - \mu E_{1}) \\ &\chi_{5} \dot{E}_{3} = 5 (r_{3} - \mu E_{3}) \end{aligned}$$

$$\mu = \frac{(\gamma_{1} \dot{\chi}_{1} + ... + \gamma_{5} \dot{\epsilon}_{3})}{(\gamma_{1} \chi_{1} + ... + \gamma_{5} \epsilon_{3})} + \mu$$

$$= \frac{4v_{1} - 4v_{2} + v_{3} - v_{4} + 4v_{2} + v_{4} - 5r_{1} - 5r_{3} + 5r_{1} + 5r_{3}}{4\chi_{1} + ... + 5\epsilon_{3}}$$

$$-\frac{\mu}{4\chi_{1} + ... + 5\epsilon_{3}} + \mu$$

$$= \frac{4v_{1} + v_{3}}{4\chi_{1} + ... + 5\epsilon_{3}}$$

Merci!

team.inria.fr/ibis