Stochastic modeling of gene regulatory networks

Hidde de Jong
MICROCOSME
INRIA and UGA
Hidde.de-Jong@inria.fr
MICROCOSME: bacterial systems biology

- **MICROCOSME**: systems biology group at INRIA/Université Grenoble Alpes in Grenoble
 Microbiologists, computer scientists, mathematicians, physicists, ...

 https://team.inria.fr/microcosme

- **Objective**: analysis, engineering, and control of the growth of bacteria
 - Specific research problems shaped by biological questions
 - Problems often addressed by combination of models and experiments
Overview

• Part 1. Systems biology and kinetic modeling
• Part 2. Metabolic network modeling
• Part 3. Gene regulatory network modeling
 – Quantitative modeling of gene regulatory networks
 – Qualitative modeling of gene regulatory networks
 – Stochastic modeling of gene regulatory networks
 – Practical on integrated models of bacterial growth (Matlab)
Gene regulatory networks

- Focus on **subsystems** that can be studied in isolation due to **modular structure** of reaction networks
 - Time-scale hierarchies
 - Connectivity structure
- **Gene regulatory networks**
 - Genes, proteins, and regulatory interactions
 - Reactions involved in transcription and translation and their regulation
 - Time-scale: min (mRNA) to h (proteins)

Gene expression

- Typically, and simplifying quite a bit, **gene expression** in bacteria involves:
 - Transcription by RNAP (mRNA)
 - Translation by ribosomes (proteins)
 - Degradation of mRNA and protein
Modeling of gene regulatory networks

- ODE model of gene expression, distinguishing transcription and translation

\[
\begin{align*}
\dot{m} &= \kappa_m - (\gamma_m + \mu) \ m \\
\dot{p} &= \kappa_p \ m - (\gamma_p + \mu) \ p
\end{align*}
\]

\[m(t) \geq 0, \text{ concentration mRNA}\]
\[p(t) \geq 0, \text{ concentration protein}\]
\[\kappa_m, \kappa_p > 0, \text{ synthesis rate constants}\]
\[\gamma_m, \gamma_p > 0, \text{ degradation rate constants}\]
\[\mu \geq 0, \text{ growth rate}\]
Stochasticity in gene expression

- ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted

- Gene expression is **stochastic** instead of **deterministic** process
 - Underlying biochemical reactions are stochastic processes
 - Probability of reaction to occur depends on random encounters of molecules in cell

Stochasticity in gene expression

• ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted

• Gene expression is **stochastic** instead of **deterministic** process
 – Underlying biochemical reactions are stochastic processes
 – Probability of reaction to occur depends on random encounters of molecules in cell

• **Discrete** number of molecules of reaction species, instead of **continuous** concentrations
 Some reactions species involved in gene expression have very low copy numbers (1-10)

Stochasticity in gene expression

- Stochasticity in gene expression leads to **noise**
 Fluctuations in mRNA and protein concentrations

Stochasticity in gene expression

- Stochasticity in gene expression leads to **noise**
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

Decrease in number of mRNA and protein molecules wrt a
Decrease in number of mRNA molecules wrt a, for same number of protein molecules

Stochasticity in gene expression

- Stochasticity in gene expression leads to **noise**
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

- Different types of noise:
 - **Intrinsic noise**: fluctuations due to stochasticity of processes involved in gene expression (transcription, translation, ...)

![Diagram of gene expression process](image.png)
Stochasticity in gene expression

- Stochasticity in gene expression leads to **noise**
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

Different types of noise:
- **Intrinsic noise**: fluctuations due to stochasticity of processes involved in gene expression (transcription, translation, …)
- **Extrinsic noise**: fluctuations due to variability in external factors (temperature, ribosome availability, …). Impact on rate constants.
Stochasticity in gene expression

• Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (*gfp* and *cfp*) controlled by same promoter

No intrinsic noise, so relative amount of both proteins is constant over time and across individual cells in population

Intrinsic noise, so relative amount of both proteins varies over time and across individual cells in population

Stochasticity in gene expression

- Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (gfp and cfp) controlled by same promoter

Elowitz et al. (2002), Science, 297(5584):1183-6
Stochasticity in gene expression

- Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (gfp and cfp) controlled by same promoter

Elowitz et al. (2002), Science, 297(5584):1183-6
Major question is how cells both tolerate and exploit noise.

Raj and van Oudenaarden (2008), *Cell*, 135(2):216-26

Most cellular processes are robust to noise, despite stochasticity of underlying system of biochemical reactions.

Sometimes, intracellular noise drives population heterogeneity that may be beneficial for a species.

After infection, only fraction of cells lyse.

ODE models are not suitable for studying origin and effects of noise.
Stochastic models

- **Stochastic models** of gene regulation are more appropriate.
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$.
Stochastic models

- **Stochastic models** of gene regulation are more appropriate.
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$.
- Reactions between molecular species lead to change in state of system from $X(t)$ to $X(t+\Delta t)$ over time-interval Δt, where $X = [X_1, \ldots, X_n]'$.

Change of state by reaction k described by vector ν_k.

Reaction 1: $\nu_1 = [-1 -1 1 0]$

Reaction 2: $\nu_2 = [1 1 -1 1]$
Stochastic models

- **Stochastic models** of gene regulation are more appropriate.
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$.
- Reactions between molecular species lead to change in state of system from $X(t)$ to $X(t+\Delta t)$ over time-interval Δt, where $X = [X_1, \ldots, X_n]$.

![Diagram of gene regulation](image)

<table>
<thead>
<tr>
<th>Reaction 1: $\nu_1 = [-1 -1 1 0]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_1 = 0$</td>
</tr>
<tr>
<td>$X_2 = 6$</td>
</tr>
<tr>
<td>$X_3 = 1$</td>
</tr>
<tr>
<td>$X_4 = 10$</td>
</tr>
</tbody>
</table>
Stochastic models

- **Stochastic models** of gene regulation are more appropriate
- Number of molecules of each species \(i \) at time-point \(t \) represented by discrete variable \(X_i(t) \in \mathbb{N} \)
- Reactions between molecular species lead to change in state of system from \(X(t) \) to \(X(t+\Delta t) \) over time-interval \(\Delta t \), where \(X = [X_1, \ldots, X_n]' \)

\[
p_a \quad \text{RNAP} \quad \text{RNAP} \cdot p_a \quad \text{RBS}_a
\]

\[
X_1 = 0 \quad X_2 = 6 \quad X_3 = 1 \quad X_4 = 10
\]

Reaction 2: \(\nu_2 = [1 \ 1 \ -1 \ 1] \)

\[
X_1 = 1 \quad X_2 = 7 \quad X_3 = 0 \quad X_4 = 11
\]
Stochastic models

• Possible states are given by possible value combinations for variables: \(\mathbf{X} = \mathbf{V} \), with \(\mathbf{V} = [V_1, \ldots, V_n] \)

• Transitions between states are given by possible reactions \(k \)
Stochastic models

- Probability distribution $p[X(t)=V]$ describes probability that at time-point t there are $V = [V_1, \ldots, V_n]$ molecules
Stochastic models

- Probability distribution $p[X(t)=V]$ describes probability that at time-point t there are $V = [V_1, \ldots, V_n]$ molecules.
Stochastic models

- Probability distribution $p[X(t)=V]$ describes probability that at time-point t there are $V = [V_1, \ldots, V_n]'$ molecules
Stochastic master equation

- Evolution of probability distribution $p[X(t)=V]$ given by

$$p[X(t+\Delta t)=V] = p[X(t)=V] \left(1 - \sum_{j=1}^{m} \alpha_j \Delta t \right) + \sum_{k=1}^{m} p[X(t)=V-v_k] \beta_k \Delta t$$

- m is the number of reactions that can occur in the system
- $\alpha_j \Delta t$ is the probability that reaction j will occur in $[t, t + \Delta t]$ given that $X(t)=V$
- $\beta_k \Delta t$ is the probability that reaction k will bring the system from $X(t)=V-v_k$ to $X(t+\Delta t)=V$ in $[t, t + \Delta t]$

Stochastic master equation

• For $\Delta t \rightarrow 0$ we obtain the stochastic master equation

$$\frac{dp[X(t)=V]}{dt} = \sum_{j=1}^{m} p[X(t)=V-v_j] \beta_j - p[X(t)=V] \alpha_j$$

• Probabilities α_j, β_j are defined in terms of kinetic constants of reactions and number of reactant molecules

• Unimolecular reaction $j : S_1 \rightarrow \text{product(s)}$

$$\alpha_j = k_j X_1 (X_1-1)/2$$

• Bimolecular reaction $j : S_1 + S_2 \rightarrow \text{product(s)}$

$$\alpha_j = k_j X_1 X_2/\Omega$$

Ω : cell volume

Stochastic master equation

- For $\Delta t \to 0$ we obtain stochastic master equation

$$\frac{dp[X(t)=V]}{dt} = \sum_{j=1}^{m} p[X(t)=V-v_j] \beta_j - p[X(t)=V] \alpha_j$$

- Probabilities α_j, β_j are defined in terms of kinetic constants of reactions and number of reactant molecules
- Analytical solution of master equation is not possible in most situations of practical interest

Stochastic simulation

- Analytical solution of master equations is not possible in most situations of practical interest
- **Stochastic simulation** generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
 - Stochastic simulation samples joint probability density function
 \[p[\tau, j|X(t) = V] \]
 \[\tau = \text{time until occurrence of next reaction} \]
 \[j = \text{index of next reaction} \]
 - **Interpretation:** $p[\tau, j|X(t) = V]d\tau$ is probability, given $X(t) = V$, that next reaction will occur in $[t + \tau, t + \tau + d\tau]$ and is reaction j

Stochastic simulation

- Analytical solution of master equations is not possible in most situations of practical interest

Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$

- Stochastic simulation samples joint probability density function

 $p[\tau, j|X(t) = V]$

 $\tau =$ time until occurrence of next reaction

 $j =$ index of next reaction

- Probability density function defined in terms of α_j, β_k (reaction constants)

Stochastic simulation

- Analytical solution of master equations is not possible in most situations of practical interest
- **Stochastic simulation** generates sequences of reactions that change state of system, starting from initial state \(X(0) = V_0 \)
- Stochastic simulation based on sampling of \(p[\tau, j|X(t) = V] \) generates sequences in exact accordance with stochastic master equations
- Repeating stochastic simulation many times (Monte-Carlo procedure) yields approximation of probability distribution \(p(X(t) = V) \)

Stochastic simulation

• Analytical solution of master equations is not possible in most situations of practical interest

• **Stochastic simulation** generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$

• Various approximations of basic stochastic simulation algorithm, trading exactness for simulation speed:
 – Tau-leaping approaches: choose τ such that α_j, β_j remain approximately constant over time interval (encapsulate several reactions in one step)
 – Quasi-steady-state approximations (distinguish between slow and fast reactions)
 – …

Stochastic simulation

- Relation of stochastic simulation models with other modeling approaches

\[a_j dt = \text{probability that } R_j \text{ will fire in next } dt \]

- CME
- SSA
- Tau-leaping
- CFPE
- CLE
- RRE

\[a_j = \text{constant during } \tau, \forall j \]

\[a_j \tau \gg 1, \forall j \]

\[X_i \to \infty, \forall i \]

\[X_i / \Omega = \text{const}_i, \forall i \]

Stochastic simulation

- **Stochastic simulation** generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$

- Stochastic simulation may lead to different dynamical behaviors starting from identical initial conditions: heterogeneity
Auto-inhibition network

- Auto-inhibition network consists of a single gene, coding for transcription regulator inhibiting expression of its own gene.

- Auto-inhibition is example of **negative feedback**, and frequently occurs in bacterial regulatory networks.

- Development of stochastic model requires list of species, reactions, and kinetic constants.
Reactions and species

\[P_a + \text{RNAP} \rightleftharpoons \text{RNAP} \cdot P_a \]

\[\text{RNAP} \cdot P_a + \text{RNAP} \rightleftharpoons \text{RNAP} \cdot P_a \cdot \text{RNAP} \]

\[\text{RBS}_a + \text{Ribosome} \rightleftharpoons \text{Ribosome} \cdot \text{RBS}_a \]

\[\text{Ribosome} \cdot \text{RBS}_a + \text{Ribosome} \rightleftharpoons \text{Ribosome} \cdot \text{RBS}_a \]

\[\text{A} + \text{A} \rightleftharpoons \text{A}_2 \]

\[\text{A}_2 + P_a \rightleftharpoons \text{A}_2 \cdot P_a \]

\[\text{RBS}_a \rightarrow \text{sun} \]
Stochastic simulation of auto-inhibition

- Occurrence of fluctuations and bursts in gene expression
Auto-inhibition and noise reduction

- Auto-inhibition reduces fluctuations in gene expression level

Cross-inhibition network

• **Cross-inhibition** network consists of two genes, each coding for transcription regulator inhibiting expression of other gene

![Diagram of cross-inhibition network]

• Cross-inhibition network is example of **positive feedback**, important for phenotypic differentiation (multi-stability)

 Thomas and d'Ari (1990), *Biological Feedback*, CRC Press

• Construction of cross inhibition network *in vivo*: **toggle switch**

Dynamics of toggle switch

• ODE model predicts bistability of toggle switch

• Question: what will be predicted long-term dynamics in stochastic model of toggle switch?
Dynamics of toggle switch

- ODE model predicts bistability of toggle switch

- Stochastic model predicts bimodal state (two attractors)

- Depending on noise characteristics, system can **spontaneously switch** from one attractor to another
Control of toggle switch

- Is it possible to stabilize toggle switch around unstable steady state in ODE model?

Lugagne et al. (2017), Nat. Commun., 8:1671
Control of toggle switch

• Is it possible to stabilize toggle switch around unstable steady state in ODE model?

Lugagne et al. (2017), Nat. Commun., 8:1671
Control of toggle switch

• Is it possible to stabilize toggle switch around unstable steady state in ODE model?
• Applications of control theory in synthetic biology: cybergenetics

https://bsse.ethz.ch/ctsb/research/cybergenetics.html
Bacteriophage λ infection of *E. coli*

- Response of *E. coli* to phage λ infection involves decision between alternative developmental pathways: lytic cycle and lysogeny

Stochastic analysis of phage λ infection

- Stochastic model of λ lysis-lysogeny decision network

Arkin et al. (1998), Genetics, 149(4): 1633-1648
Stochastic analysis of phage λ infection

- Time evolution of Cro and CI dimer concentrations

- Due to stochastic fluctuations, under identical conditions cells follow one or other pathway (with some probability)

Arkin et al. (1998), Genetics, 149(4): 1633-1648
Comparison with deterministic approach

- Deterministic models can be seen as predicting **average behavior** of cell population

- Analysis of average behavior may obscure that one part of population chooses one pathway rather than another

- However, under some conditions deterministic models yield good approximation
Measurements of phage λ infection

- New measurement techniques allow real-time and *in-vivo* monitoring of the execution of lytic and lysogenic pathways in individual cells

Use of reporter genes in combination with fluorescence microscopy

Stochasticity and hidden variables

- Is observed population heterogeneity entirely due to stochastic dynamics of biochemical reactions?
- **Hidden variables** that deterministically set outcome of what seems noisy decision process

 Deterministic voting of stochastic decision in single phages

Zeng et al. (2010), *Cell*, 141(4):682-91
Conclusions

• Stochastic models provide more realistic picture of gene expression

• Difficulty of stochastic models is that required information on regulatory mechanisms on molecular level usually not available

 Reaction schemas and kinetic constants, necessary for generating values of parameters τ and ρ, are not or incompletely known

• Another difficulty is that stochastic simulation is computationally expensive

 Large networks cannot currently be handled, but a host of extensions and approximations have been developed
Thanks!

team.inria.fr/microcosme