

Stochastic modeling of gene regulatory networks

Hidde de Jong MICROCOSME INRIA and UGA Hidde.de-Jong@inria.fr

MICROCOSME: bacterial systems biology

 MICROCOSME: systems biology group at INRIA/Université Grenoble Alpes in Grenoble

Microbiologists, computer scientists, mathematicians, physicists, ...

https://team.inria.fr/microcosme

- Objective: analysis, engineering, and control of the growth of bacteria
 - Specific research problems shaped by biological questions
 - Problems often addressed by combination of models and experiments

Overview

- Part 1. Systems biology and kinetic modeling
- Part 2. Metabolic network modeling
- Part 3. Gene regulatory network modeling
 - Quantitative modeling of gene regulatory networks
 - Qualitative modeling of gene regulatory networks
 - Stochastic modeling of gene regulatory networks
 - Practical on integrated models of bacterial growth (Matlab)

Gene regulatory networks

- Focus on subsystems that can be studied in isolation due to modular structure of reaction networks

 (Changing) carbon
 - Time-scale hierarchies
 - Connectivity structure
- Gene regulatory networks
 - Genes, proteins, and regulatory interactions
 - Reactions involved in transcription and translation and their regulation
 - Time-scale: min (mRNA) to h (proteins)

Kotte et al. (2010), Mol. Syst. Biol., 6: 355

Gene expression

- Typically, and simplifying quite a bit, gene expression in bacteria involves:
 - Transcription by RNAP (mRNA)
 - Translation by ribosomes (proteins)
 - Degradation of mRNA and protein

Modeling of gene regulatory networks

ODE model of gene expression, distinguishing transcription

and translation

$$\dot{m} = \kappa_m - (\gamma_m + \mu) m$$

$$\dot{p} = \kappa_p m - (\gamma_p + \mu) p$$

 $m(t) \ge 0$, concentration mRNA

 $p(t) \ge 0$, concentration protein

 κ_m , $\kappa_p > 0$, synthesis rate constants

 γ_m , $\gamma_p > 0$, degradation rate constants

 $\mu \ge 0$, growth rate

- ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
- Gene expression is stochastic instead of deterministic process
 - Underlying biochemical reactions are stochastic processes

Probability of reaction to occur depends on random encounters of

molecules in cell

Goodsell (2010), The Machinery of Life, Springer, 2nd ed.

- ODE models make abstraction of underlying biochemical reaction processes involved in gene expression that may not be warranted
 Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
- Gene expression is stochastic instead of deterministic process
 - Underlying biochemical reactions are stochastic processes
 - Probability of reaction to occur depends on random encounters of molecules in cell
- Discrete number of molecules of reaction species, instead of continuous concentrations
 - Some reactions species involved in gene expression have very low copy numbers (1-10)

Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations

Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

- Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

- Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

- Different types of noise:
 - Intrinsic noise: fluctutations due to stochasticity of processes involved in gene expression (transcription, translation, ...)

- Stochasticity in gene expression leads to noise
 Fluctuations in mRNA and protein concentrations
- Noise amplified by small number of molecules

- Different types of noise:
 - Intrinsic noise: fluctutations due to stochasticity of processes involved in gene expression (transcription, translation, ...)
 - Extrinsic noise: fluctuations due to variability in external factors (temperature, ribosome availability, ...). Impact on rate constants.

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (*gfp* and *cfp*) controlled by same promoter

No intrinsic noise, so relative amount of both proteins is constant over time and across individual cells in population

Intrinsic noise, so relative amount of both proteins varies over time and across individual cells in population

Elowitz et al. (2002), Science, 297(5584):1183-6

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (*gfp* and *cfp*) controlled by same promoter

Experimental discrimination between intrinsic and extrinsic noise

Expression in a single cell with two different reporter genes (*gfp* and *cfp*) controlled by same promoter

Elowitz et al. (2002), Science, 297(5584):1183-6

Major question is how cells both tolerate and exploit noise.

Rao et al. (2002), Nature, 420(6912):231-237 Raj and van Oudenaarden (2008), Cell, 135(2):216-26

- Most cellular processes are robust to noise, despite stochasticity of underlying system of biochemical reactions
- Sometimes, intracellular noise drives population heterogeneity that may be beneficial for a species

After infection, only fraction of cells lyse

 ODE models are not suitable for studying origin and effects of noise

- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$

- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X=[X_1,\ldots,X_n]'$

Change of state by reaction k described by vector \boldsymbol{v}_k

Reaction 1:
$$v_1 = [-1 - 1 \ 10]$$

$$P_a + RNAP + RNAP + RNAP + RBS_a$$

$$RNAP \cdot P_a + RBS_a$$

- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X=[X_1,\ldots,X_n]'$

- Stochastic models of gene regulation are more appropriate
- Number of molecules of each species i at time-point t represented by discrete variable $X_i(t) \in \mathbb{N}$
- Reactions between molecular species lead to change in state of system from X(t) to $X(t+\Delta t)$ over time-interval Δt , where $X=[X_1,\ldots,X_n]'$

- Possible states are given by possible value combinations for variables: X = V, with $V = [V_1, ..., V_n]'$
- Transitions between states are given by possible reactions k

• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]$ molecules

• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]'$ molecules

• Probability distribution p[X(t)=V] describes probability that at time-point t there are $V=[V_1,\ldots,V_n]$ molecules

Stochastic master equation

• Evolution of probability distribution p[X(t)=V] given by

$$p[X(t + \Delta t) = V] = p[X(t) = V] (1 - \sum_{j=1}^{m} \alpha_j \Delta t) + \sum_{k=1}^{m} p[X(t) = V - v_k] \beta_k \Delta t$$

- m is the number of reactions that can occur in the system
- $\alpha_j \, \Delta t$ is the probability that reaction j will occur in $[t, \, t \, + \Delta t]$ given that X(t) = V
- $\beta_k \Delta t$ is the probability that reaction k will bring the system from $X(t) = V v_k$ to $X(t + \Delta t) = V$ in $[t, t + \Delta t]$

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier

Stochastic master equation

• For $\Delta t \rightarrow 0$ we obtain stochastic master equation

$$dp[\mathbf{X}(t)=\mathbf{V}] / dt = \sum_{j=1}^{m} p[\mathbf{X}(t)=\mathbf{V}-\mathbf{v}_{j}] \beta_{j} - p[\mathbf{X}(t)=\mathbf{V}] \alpha_{j}$$

- Probabilities α_j , β_j are defined in terms of kinetic constants of reactions and number of reactant molecules
- Unimolecular reaction $j: S_1 \rightarrow \text{product}(s)$

$$\alpha_j = k_j X_1 (X_1 - 1)/2$$

Bimolecular reaction j : S₁ + S₂ → product(s)

$$\alpha_i = k_i X_1 X_2 / \Omega$$

 Ω : cell volume

Stochastic master equation

• For $\Delta t \rightarrow 0$ we obtain stochastic master equation

$$dp[\mathbf{X}(t)=\mathbf{V}] / dt = \sum_{j=1}^{m} p[\mathbf{X}(t)=\mathbf{V}-\mathbf{v}_{j}] \beta_{j} - p[\mathbf{X}(t)=\mathbf{V}] \alpha_{j}$$

- Probabilities α_j , β_j are defined in terms of kinetic constants of reactions and number of reactant molecules
- Analytical solution of master equation is not possible in most situations of practical interest

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
 - Stochastic simulation samples joint probability density function $\mathbf{p}[\,\tau,j/X(t)=V]$

 τ = time until occurrence of next reaction

j = index of next reaction

- **Interpretation:** $p[\tau, j/X(t) = V]d\tau$ is probability, given X(t) = V, that next reaction will occur in $[t+\tau, t+\tau+d\tau]$ and is reaction j

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
 - Stochastic simulation samples joint probability density function $p[\tau,j/X(t)=V]$

 τ = time until occurrence of next reaction

j = index of next reaction

– Probability density function defined in terms of α_j , β_k (reaction constants)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
- Stochastic simulation based on sampling of $p[\tau, j/X(t) = V]$ generates sequences in exact accordance with stochastic master equations
- Repeating stochastic simulation many times (Monte-Carlo procedure) yields approximation of probability distribution p(X (t)=V)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

- Analytical solution of master equations is not possible in most situations of practical interest
- Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$
- Various approximations of basic stochastic simulation algorithm, trading exactness for simulation speed:
 - Tau-leaping approaches: choose τ such that α_j , β_j remain approximately constant over time interval (encapsulate several reactions in one step)
 - Quasi-steady-state approximations (distinguish between slow and fast reactions)
 - - ...

Relation of stochastic simulation models with other modeling approaches

• Stochastic simulation generates sequences of reactions that change state of system, starting from initial state $X(0) = V_0$

 Stochastic simulation may lead to different dynamical behaviors starting from identical initial conditions: heterogeneity

Auto-inhibition network

 Auto-inhibition network consists of a single gene, coding for transcription regulator inhibiting expression of its own gene

 Auto-inhibition is example of negative feedback, and frequently occurs in bacterial regulatory networks

Thieffry et al. (1998), BioEssays, 20(5):433-440

 Development of stochastic model requires list of species, reactions, and kinetic constants

Reactions and species

Stochastic simulation of auto-inhibition

Occurrence of fluctuations and bursts in gene expression

Auto-inhibition and noise reduction

Auto-inhibition reduces fluctuations in gene expression level

Becskei and Serrano (2000), Nature, 405(6785):590-591

Cross-inhibition network

 Cross-inhibition network consists of two genes, each coding for transcription regulator inhibiting expression of other gene

 Cross-inhibition network is example of positive feedback, important for phenotypic differentiation (multi-stability)

Thomas and d'Ari (1990), Biological Feedback, CRC Press

Construction of cross inhibition network in vivo: toggle
 switch
 Gardner et al. (2000), Nature, 403(6786): 339-42

Dynamics of toggle switch

ODE model predicts bistability of toggle switch

Gardner et al. (2000), Nature, 403(6786): 339-42

 Question: what will be predicted long-term dynamics in stochastic model of toggle switch?

Dynamics of toggle switch

ODE model predicts bistability of toggle switch

Stochastic model predicts bimodal state (two attractors)

Warner and ter Wolde (2005), J. Phys. Chem. B, 109(4):6812-23

 Depending on noise characteristics, system can spontaneously switch from one attractor to another

Control of toggle switch

 Is it possible to stabilize toggle switch around unstable steady state in ODE model?

PTG Feedback 1

Place

Place

Place

Place

PtetR+GFP

Control of toggle switch

 Is it possible to stabilize toggle switch around unstable steady state in ODE model?

Control of toggle switch

- Is it possible to stabilize toggle switch around unstable steady state in ODE model?
- Applications of control theory in synthetic biology:
 cybergenetics

https://bsse.ethz.ch/ctsb/research/cybergenetics.html

Bacteriophage λ infection of *E. coli*

Response of *E. coli* to phage λ infection involves decision between alternative developmental pathways:

lytic cycle and lysogeny

Ptashne (1997), A Genetic Switch: Phage λ and Higher Organisms, Cell Press

Stochastic analysis of phage λ infection

Stochastic model of λ
lysis-lysogeny
decision network

CII-CIII) deg⊸ k₇ N cIII nucleotides from the cohesive end site (cos) T_{R2} cl TR1

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Stochastic analysis of phage \(\lambda \) infection

- Time evolution of Cro and Cl dimer concentrations
- Due to stochastic fluctuations, under identical conditions cells follow one or other pathway (with some probability)

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Comparison with deterministic approach

 Deterministic models can be seen as predicting average behavior of cell population

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306

 Analysis of average behavior may obscure that one part of population chooses one pathway rather than another

Arkin et al. (1998), Genetics, 149(4): 1633-1648

 However, under some conditions deterministic models yield good approximation

Measurements of phage λ infection

 New measurement techniques allow real-time and in-vivo monitoring of the execution of lytic and lysogenic pathways in individual cells

Use of reporter genes in combination with fluorescence microscopy

Amir et al. (2007), Mol. Syst. Biol., 3:71

Stochasticity and hidden variables

- Is observed population heterogeneity entirely due to stochastic dynamics of biochemical reactions?
- Hidden variables that deterministically set outcome of what seems noisy decision process

Deterministic voting of stochastic decision in single phages

Zeng et al. (2010), Cell, 141(4):682-91

Conclusions

- Stochastic models provide more realistic picture of gene expression
- Difficulty of stochastic models is that required information on regulatory mechanisms on molecular level usually not available
 - Reaction schemas and kinetic constants, necessary for generating values of parameters τ and ρ , are not or incompletely known
- Another difficulty is that stochastic simulation is computationally expensive
 - Large networks cannot currently be handled, but a host of extensions and approximations have been developed

Thanks!

team.inria.fr/microcosme

