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* Objective: analysis, engineering, and control of the growth
of bacteria

— Specific research problems shaped by biological questions
— Problems often addressed by combination of models and

experiments



Overview

« Part 1. Systems biology and kinetic modeling
« Part 2. Metabolic network modeling

« Part 3. Gene regulatory network modeling

— Quantitative modeling of gene regulatory networks

— Qualitative modeling of gene regulatory networks

— Stochastic modeling of gene regulatory networks

— Practical on integrated models of bacterial growth (Matlab)
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Gene regulatory networks

* Focus on subsystems that can be studied in isolation due
to modular structure of reaction networks T i
— Time-scale hierarchies Tk
— Connectivity structure
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Gene expression

« Typically, and simplifying quite a bit, gene expression in
bacteria involves:

— Transcription by RNAP (MRNA)
— Translation by ribosomes (proteins)
— Degradation of mRNA and protein

transcription translation
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Modeling of gene regulatory networks

 ODE model of gene expression, distinguishing transcription

and translation p p
m P
transcription m(t) translation

. e N, t
M= = UntHM b o wea "

} — c.m— + promoter gene protein

p P (7p “’) p degradation degradatinnl

Ym + 1 Tp + U

m(t) > 0, concentration mRNA

p(t) > 0, concentration protein

Km» K, > 0, synthesis rate constants
Yo Vo> 0, degradation rate constants

>0, growth rate
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Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical

reaction processes involved in gene expression that may not
be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464

« (Gene expression is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

Goodsell (2010), The Machinery of
Life, Springer, 2nd ed.




Stochasticity In gene expression

 ODE models make abstraction of underlying biochemical
reaction processes involved in gene expression that may not

be warranted Kaern et al. (2005), Nat. Rev. Genet., 6(6):451-464
« (Gene expression is stochastic instead of deterministic
process

— Underlying biochemical reactions are stochastic processes

— Probability of reaction to occur depends on random encounters of
molecules in cell

* Discrete number of molecules of reaction species, instead
of continuous concentrations

Some reactions species involved in gene expression have very low
copy numbers (1-10)
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules

transcription translation

- T, ——————
o R
promoter gene protein
degradation degradation l
z 24

 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)
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Stochasticity In gene expression

e Stochasticity in gene expression leads to noise
Fluctuations in mMRNA and protein concentrations

* Noise amplified by small number of molecules

\ transcription translation % /

e

promoter gene protein

/ e l oo | \
) 2z

 Different types of noise:

— Intrinsic noise: fluctutations due to stochasticity of processes
involved in gene expression (transcription, translation, ...)

— EXxtrinsic noise: fluctuations due to variability in external factors
(temperature, ribosome availability, ...). Impact on rate constants
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter

A
8 o CDO
§ [
2 —> (ﬁtj CD Nointrinsic noise, so relative amount of both proteins is
2 — C ) constant over time and across individual cells in population

Time

Intrinsic noise, so relative amount of both proteins varies
over time and across individual cells in population

Elowitz et al. (2002), Science, 297(5584):1183-6
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter
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Stochasticity In gene expression

* Experimental discrimination between intrinsic and extrinsic
noise

Expression in a single cell with two different reporter genes (gfp and
cfp) controlled by same promoter
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Stochasticity In gene expression

e Major question is how cells both tolerate and exploit noise.

Rao et al. (2002), Nature, 420(6912):231-237
Raj and van Oudenaarden (2008), Cell, 135(2):216-26

* Most cellular processes are robust to noise, despite
stochasticity of underlying system of biochemical reactions

@ o0
o . . . ? . I BACTERIOPHAGE LAMBDA
S(_)metlmes, mt_racellular noise DL
drives population heterogeneity o
that may be beneficial for a species @ w1

After infection, only fraction of cells lyse .i:

* ODE models are not suitable for  weemoa: - . o
studying origin and effects of noise @ ,

S i
Loty UCA
. UniverSité A —
Grenoble Alpes



Stochastic models

e Stochastic models of gene regulation are more appropriate

« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N
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Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where

X — [Xl,..., Xn],

Change of state by reaction k described by vector v

—
Reaction 1: vy=[-1-11 O] T — - — g

Pa RNAP RNAP-P,
Reaction 2: v,=[11 -1 1] -k @& = .
RNAP-P, RNAP P, RBS,




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where

X = [Xla n]
_:—_’ D - P
RNAP RNAP-P, RBSa
X, =1 X,=7 X,=0 X, = 10

Reaction 1: vy =[-1-1 1 (] l




Stochastic models

e Stochastic models of gene regulation are more appropriate
« Number of molecules of each species I at time-point t
represented by discrete variable Xi(t) € N

* Reactions between molecular species lead to change Iin state of
system from X (1) to X (t+At) over time-interval At, where

X = [Xla n]
_:—_’ D - P
RNAP RNAP-P, RBSa
X, =0 X, =6 X, =1 X, = 10

Reaction 2: v, =[11 -1 1] l




Stochastic models
* Possible states are given by possible value combinations for
variables: X =V, with V =[V,,..., V]

 Transitions between states are given by possible reactions k
[1,7,0,10]

O O ® o o o
[0,6,1,101/+V1
O O - O

+V,

[1,7,0,11]




Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules

® ® & o o
® 0‘0 e O
Time t;
® ® & o o
® 6 o o6 o o




Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules

Time t;




Stochastic models

« Probability distribution p[X(t)=V] describes probability that at
time-point t there are V = [Vy,..., V,]* molecules

Time t,




Stochastic master equation
« Evolution of probability distribution p[X(t)=V] given by
pIX (t+AD) =V] = p[X () =V](1- 2 o5 At) +

kz o[X (1) = V—u] A At

— M is the number of reactions that can occur in the system

— @ Atis the probability that reaction J will occur in [t, t +At] given that
X(t)=V

— J Alis the probability that reaction K will bring the system from
X(t)= V—v to X(t +At)=V in [t, t +At]

Van Kampen (1997), Stochastic Processes in Physics and
Chemistry, Elsevier




Stochastic master equation

* For At —» 0 we obtain stochastic master equation
dp[X(1)=V]/ dt = 2. p[X(1)=V-v] £ - p[X()=V] ¢
j=1

* Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

* Unimolecular reaction j: S; — product(s)

o5 = k; X, (X;-1)/2

* Bimolecular reaction j: S; + S, — product(s)
o; = ki Xq X,/Q Q : cell volume




Stochastic master equation

* For At —» 0 we obtain stochastic master equation

dpIX()=V] / dt = 3. pX(V=V-¥] 4 - PIXV=V] «

j=1
* Probabilities Q, ,Bj are defined in terms of kinetic constants of
reactions and number of reactant molecules

« Analytical solution of master equation is not possible in most
situations of practical interest

Van Kampen (1997), Stochastic Processes in Physics and Chemistry, Elsevier




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

— Stochastic simulation samples joint probability density function
plz JIX(t) = V]
T — time until occurrence of next reaction

] = index of next reaction

— Interpretation: p[z, j|X(t) = V]dr is probability, given X(t) =V, that next
reaction will occur in [t+7, t +7+d7] and is reaction |

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55
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Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

e Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

— Stochastic simulation samples joint probability density function
plz JIX(t) = V]
T — time until occurrence of next reaction
] = index of next reaction

— Probability density function defined in terms of a, B (reaction
constants)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55
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Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

« Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Stochastic simulation based on sampling of p[z, j|X(t) = V]

generates sequences in exact accordance with stochastic
master equations

* Repeating stochastic simulation many times (Monte-Carlo
procedure) yields approximation of probability distribution

p(X (t)=V)

Gillespie (2002), J. Phys. Chem., 81(25): 2340-61




Stochastic simulation

« Analytical solution of master equations is not possible in most
situations of practical interest

« Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

« Various approximations of basic stochastic simulation

algorithm, trading exactness for simulation speed:
— Tau-leaping approaches: choose z such that ¢;, 4 remain approximately
constant over time interval (encapsulate several reactions in one step)

— Quasi-steady-state approximations (distinguish between slow and fast
reactions)

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55
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Stochastic simulation

* Relation of stochastic simulation models with other modeling
approaches

a;dt = probability that R;will fire in next df

a; = constant during t, Vj

CME SSA I Tau-leaping | | Discrete and stochastic
| 1
at » 1,Vj}
| I 1 | I |
| CFPE ! i} CLE | Continuous and stochastic
1 L__

/Y_i" — DO,Q — oo
Xj/(2 = const;, Vi

R
I RRE : | Continuous and deterministic |
1

Gillespie (2007), Annu. Rev. Phys. Chem., 58:35-55




Stochastic simulation

« Stochastic simulation generates sequences of reactions that
change state of system, starting from initial state X(0) =V,

® _06—-90._0 o o
% 13/ \Tg
X(0) =V, ‘ ‘ ‘ ‘ ‘ .
o o’ T 7 \3\
-0 o o 00
75 / ’ 5
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« Stochastic simulation may lead to different dynamical behaviors
starting from identical initial conditions: heterogeneity




Auto-inhibition network

« Auto-inhibition network consists of a single gene, coding for
transcription regulator inhibiting expression of its own gene

| J‘ > Pmltein A

gene a

« Auto-inhibition is example of negative feedback, and
frequently occurs in bacterial regulatory networks

Thieffry et al. (1998), BioEssays, 20(5):433-440

* Development of stochastic model requires list of species,
reactions, and kinetic constants




Reactions and species

Pa RNAP RNAP-P,

-k, @& = .
RNAP-P, RNAP P, RBS,
A + 4_' ../\/

RBS, Ribosome Ribosome-RBS,
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Stochastic simulation of auto-inhibition

* Occurrence of fluctuations and bursts in gene expression

80
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Auto-inhibition and noise reduction

« Auto-inhibition reduces fluctuations in gene expression level

a 70
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d‘:-:; 50

C) g 40
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Becskei and Serrano (2000), Nature, 405(6785):590-591 ‘




Cross-inhibition network

* Cross-inhibition network consists of two genes, each
coding for transcription regulator inhibiting expression of

other gene
| l > Protein A | J‘ » Protein B
gene a gene b

* Cross-inhibition network is example of positive feedback,
Important for phenotypic differentiation (multi-stability)

Thomas and d’Ari (1990), Biological Feedback, CRC Press

« Construction of cross inhibition network in vivo: toggle

SWi tC h Gardner et al. (2000), Nature, 403(6786): 339-42




Dynamics of toggle switch

 ODE model predicts bistability of toggle switch

a Gardner et al. (2000), Nature, 403(6786): 339-42

" State 1
(high state)

du/dt=0  .‘Separatrix
dv/dt =0 .*

State 2
(low state)

" Unstable
 A—_steady-state

u

* Question: what will be predicted long-term dynamics in
stochastic model of toggle switch?
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Dynamics of toggle switch

 ODE model predicts bistability of toggle switch

40

"~ State 1 Exclusive
(high state) 304 P P
du/dt=0  .‘Separatrix
dv/dt =0 .* '
v A N 20-
/ State 2 B
(low state)
-~ Unstable 10-
 A—_steady-state
u 0 10 20 30 40

Na
e Stochastic model predicts bimodal state (two attractors)

Warner and ter Wolde (2005), J. Phys. Chem. B, 109(4):6812-23

* Depending on noise characteristics, system can
spontaneously switch from one attractor to another

R —



Control of toggle switch

* |s it possible to stabilize toggle switch around unstable
steady state in ODE model?

a
Feedback 1

o PTG ——0 :
4 °e plac \ i-

—C)
‘ RFP+LacI ]

HFP Iacf I— TetH+GFP
ptet -, )
L ]
i: O 3T ¢

- Feedback 2

Lugagne et al. (2017), Nat. Commun., 8:1671
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Control of toggle switch

* |s it possible to stabilize toggle switch around unstable
steady state in ODE model?

A b x103 Cc x103
Feedback 1

v IPTG—— 2]
@
RFP " | | ] = = /A
A P b AV N ’

)
N
|
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I O
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d 15X-
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< i ) Time (h)
3 I
s
@
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0 I L] L] L]
0 1.0 2.0 3.0
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Time (h)

Lugagne et al. (2017), Nat. Commun., 8:1671
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Control of toggle switch

* |s it possible to stabilize toggle switch around unstable
steady state in ODE model?

* Applications of control theory in synthetic biology:
cybergenetics

https://bsse.ethz.ch/ctsb/research/cybergenetics.html




Bacteriophage A infection of E. coli

 Response of E. coli to phage A 6 0 B0 oo
Infection involves decision 07 )
between alternative I o
developmental pathways: @ weccron v
lytic cycle and lysogeny |
Ptashne (1997), A Genetic Switch: Phage A and creizATioNor oA
Higher Organisms, Cell Press LYSOGENIC CYCLE / \ .
7D Cid

STRESS
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Stochastic analysis of phage A infection

F

* Stochastic model of A ’ a2

lysis-lysogeny (= [ l: S
decision network T fof oy e

b ucleotides from the cohesive end site (cos)

35000 40,000

| l [ I
7o e "'*_I” ‘_rl” res el

cro.cli QO
*——_.__Q.

clil ' TRy Tr2
_—
Arkin et al. (1998), Genetics, 149(4): 1633-1648 4&7 TLT
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Stochastic analysis of phage A infection

« Time evolution of Cro and ClI
dimer concentrations

* Due to stochastic fluctuations,
under identical conditions cells
follow one or other pathway (with
some probabillity)

o v_I*TrTll"lTrl’ll‘111ITl|llvl"lll'_v—'

0 5 10 15 20 25 30 35
Time (minutes)

Arkin et al. (1998), Genetics, 149(4): 1633-1648
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Comparison with deterministic approach

100
90 (a) all cells

 Deterministic models can be seen — o G0

70
60
50
40

as predicting average behavior of
cell population

Gillespie. (2000), J. Chem. Phys., 113(1): 297-306

« Analysis of average behavior may
obscure that one part of population
chooses one pathway rather than
another

Arkin et al. (1998), Genetics, 149(4): 1633-1648

Nanomolar

Nanomolar

100 :
90 (c) lysogenic subpopulation
80
70 -
60 —
50

« However, under some conditions 0-
deterministic models yield good 09

10 1

approximation o B ]

0 5 10 15 20 25 30 35

Time (minutes)
g fuea e
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Measurements of phage A infection

 New measurement techniques allow real-time and in-vivo

monitoring of the execution of lytic and lysogenic pathways
In individual cells

Use of reporter genes in combination with fluorescence microscopy
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Amir et al. (2007), Mol. Syst. Biol., 3:71




Stochasticity and hidden variables

* |Is observed population heterogeneity entirely due to
stochastic dynamics of biochemical reactions?

 Hidden variables that
deterministically set outcome of
what seems noisy decision process

oclsjgn maklng at the
sub -cellu

k I ( lndiv
LY ” (( m”bjs\

l l Voting

Deterministic voting of stochastic \
decision in single phages

A B
100; Single phage 100; Single cell 100, Population 25 S R
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Conclusions

« Stochastic models provide more realistic picture of gene
expression

 Difficulty of stochastic models is that required information on
regulatory mechanisms on molecular level usually not
available

Reaction schemas and kinetic constants, necessary for generating
values of parameters 7 and p, are not or incompletely known

« Another difficulty is that stochastic simulation is
computationally expensive

Large networks cannot currently be handled, but a host of extensions
and approximations have been developed
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