
Practical Exercises : Flux Balance Analysis using
the COnstraint-Based Reconstruction and Analysis

(COBRA) Toolbox

Hidde de Jong, Nils Giordano & Daniel Kahn

November 5, 2015

This document is largely based on the tutorial accompanying the review by Orth et al.
(2010), "What is flux balance analysis?", Nature Biotechnology, 28(3):245-8.

1 General principle

Over the past few decades, large amounts of data at the genome-scale level have accumu-
lated, allowing the increasingly precise reconstruction of metabolic pathways. At this level
of detail, it is almost impossible to obtain an intuitive understanding of how the entire sys-
tem works without mathematical and computational analysis. Modelling at the genome-scale
level may require one to make mathematical abstractions. This is also the case in the ap-
proach considered in the Practical Exercises of this course, Flux Balance Analysis (FBA).
FBA focuses on physicochemical constraints, based on current knowledge, to define the set
of feasible flux distributions for a biological network in a given condition. These constraints
include compartmentalization, mass conservation, molecular crowding, and thermodynamic
directionality. FBA selects the flux distribution(s) from the set of feasible flux distributions
that optimize(s) a particular objective function.

Flux Balance Analysis can be performed by the COnstraints Based Reconstruction and
Analysis (COBRA) toolbox (from the openCOBRA project, see http://opencobra.gitnet.io/
openCOBRA/ ). Its installation is organised around three main components:

• a library to read models in a standardised format;

• a solver to optimise fluxes;

• a toolbox with pre-defined FBA functions.

1



2 COBRA Components

2.1 SBML: exchange models in systems biology

Standardisation is often a big problem in the computional sciences . In systems biology, one
needs to be able to construct, analyse and exchange models in the same way as one needs to
construct, analyse and exchange sequence data in genomics. The systems biology community
has developed the Systems Biology Markup Language (SBML) as a standard for publishing
models. It is a computer-readable format that has been widely adopted.

The Systems Biology Markup Language (SBML) is an XML-based language that is free,
open and benefits from widespread software support and a community of users and developers
(http://sbml.org). It can represent many different classes of biological phenomena, includ-
ing metabolic networks, cell signaling pathways, regulatory networks, infectious diseases, ...
Software support is usually based on the SBML library (http://sbml.org/Software/libSBML).

2.2 The LP solver

>From a mathematical point of view, the resolution of the optimisation problems in FBA
involves linear programming (LP). There exist many LP solvers, three of which can be used
by the openCOBRA toolbox. For these practical exercices, we will use the LP solver in the
open-source GNU Linear Programming Kit (GLPK). GLPK is a software package intended
for solving large-scale linear programming (LP), mixed integer programming (MIP), and other
related problems. It is a set of routines written in ANSI C and organized in the form of a
library with functions that can be called from within other programs. Another option is to
use Gurobi, which is freely available for academic use (you just need to activate the licence
from an academic domain the first time).

2.3 The COBRA Toolbox

This is a free Matlab package containing predefined functions for performing FBA and
related functionalities on a constraint-based model. A Python module is also available
with quite a similar syntax (maybe a little more object-oriented). We chose to use Mat-
lab in this PE to avoid compatibility issues, but feel free to check on the openCOBRA
website if you want to use the Python version at home. All COBRA functions are docu-
mented at http://opencobra.github.io/cobratoolbox/docs/index.html, which is also available
as your_cobra_directory/docs/index.html. The basic Matlab COBRA functions are listed
below:

Page 2



addReaction() % add a new reaction to a model
changeObjective() % change the objective function reaction(s)
changeRxnBounds() % change the upper or lower bounds on reactions
deleteModelGenes() % constrain reactions associated with deleted genes to 0

5 drawFlux() % print a flux distribution on a map
findRxnIDs() % get index of a reaction
optimizeCbModel() % perform FBA on a model
printFluxVector() % print the results of an FBA calculation
printRxnFormula() % print the formula of a reaction

10 readCbModel() % (requires SBML Toolbox) load a model in SBML format
writeCbModel() % (requires SBML Toolbox) write a model in SBML format

Exercise 1: Simulation of aerobic and anaerobic growth rates

This section will demonstrate how to perform basic FBA calculations. We will simulate the
growth of E. coli on glucose under aerobic (high O2) and anaerobic (low O2) conditions.

Setting up the model

First, you need to initialize and load the E. coli core model:

initCobraToolbox
load ecoli_core_model.mat; % or readCbModel('ecoli_core_model.xml') if

% libSMBL is installed

Next, to ensure that the biomass reaction is set as the objective function, enter:

model = changeObjective(model,'Biomass_Ecoli_core_w_GAM');

To inspect the biomass composition in the E. coli core model, enter:

printRxnFormula(model,'Biomass_Ecoli_core_w_GAM');

Question
Comment on the composition of the objective function: which metabolites are involved?
Where does the stoichiometry come from?

Next we will set the maximum glucose uptake rate to 18.5 mmol gDW−1 hr−1 (millimoles
per gram dry cell weight per hour, the default flux units used in the COBRA Toolbox). Note

Page 3



Figure 1: Map of the E. coli core metabolic network. Orange circles represent cytosolic
metabolites, yellow circles represent extracellular metabolites, and the blue arrows represent
reactions. Reaction name abbreviations are uppercase and metabolite name abbreviations
are lowercase. Page 4



that by convention, uptake reactions have a negative flux because they are written as export
reactions (e.g., glc_D[e] <==>).

model = changeRxnBounds(model,'EX_glc(e)',-18.5,'l');

This changes the lower bound (’l’ for ’lower’) of the glucose exchange reaction to -18.5, a
biologically realistic uptake rate.

Growth simulation in different oxygen conditions

We will first allow unlimited oxygen availability by changing the boundaries of the oxygen
uptake reaction. To do that, we set the lower bound of the oxygen uptake reaction to a large
number (so that it is practically unbounded).

model = changeRxnBounds(model,'EX_o2(e)',-1000,'l');

We will now perform FBA. Note that we want to maximize the objective function.

FBAsolution = optimizeCbModel(model,'max');

You can draw the solution on the E. coli core map using the following command.

map = readCbMap('ecoli_core_map.txt');
options.zeroFluxWidth = 1; % reduce size of 0-flux arrows
options.fileName = 'target.svg'; % choose a file name
drawFlux(map, model, FBAsolution.x, options)

5 % You can open target.svg with firefox or inkscape

Question
What is the growth rate predicted by FBA (FBAsolution.f) in aerobic conditions?
Which pathways carry significant flux under these conditions? Check the flux vector
FBAsolution.x and draw the fluxes on the map with drawFlux().

Next, the same simulation is performed under anaerobic conditions. Keep the same model
and disable oxygen uptake.

model = changeRxnBounds(model,'EX_o2(e)',0,'l');

Question
What is the growth rate predicted under anaerobic conditions? Which pathways carry
significant flux under these conditions? Based on what you know of central carbon
metabolism, comment on the discrepancies between the solutions in aerobic and anaerobic
conditions (difference in growth rate and fluxes).

Page 5



Exercise 2: Growth on alternate substrates

Just as FBA was used to calculate growth rates of E. coli on glucose in the previous exercise,
it can also be used to simulate growth on other substrates. The core E. coli model contains
exchange reactions for 13 different organic compounds, each of which can be used as the sole
carbon source under aerobic conditions. For example, to simulate growth on succinate instead
of glucose, first use the changeRxnBounds() function to set the lower bound of the glucose
exchange reaction EX_glc(e) to 0.

model = changeRxnBounds(model,'EX_glc(e)',0,'l');

Then use changeRxnBounds to set the lower bound of the succinate exchange reaction EX_succ(e)
to -20 mmol gDW−1 hr−1 (an arbitrary uptake rate).

model = changeRxnBounds(model,'EX_succ(e)',-20,'l');

As in the glucose examples, make sure that Biomass_Ecoli_core_w_GAM is set as the objective
function, and use optimizeCbModel() to perform FBA.

FBAsolution = optimizeCbModel(model,'max');

Question
What is the growth rate of E. coli on succinate both in aerobic an anaerobic conditions?
Predict also the growth rates on other organic substrates under both aerobic and anaerobic
conditions. For each, use a substrate uptake rate of 20 mmol gDW−1 hr−1.

Growth rate (h−1)
Substrate Aerobic Anaerobic
ac
acald
akg
etoh
fru
fum
glc-D
gln-L
glu-L
lac-D
mal-L
pyr
succ

Page 6



Exercise 3: Production of co-factors and biomass precursors

FBA can also be used to determine the maximum yields of important cofactors and biosyn-
thetic precursors from glucose and other substrates. This can be done by changing the objec-
tive function(s). In this example, we will calculate the maximum yields of ATP from glucose
under aerobic conditions. Start by constraining the glucose exchange reaction EX_glc(e) to
exactly -1 mmol gDW−1 hr−1.

model = changeRxnBounds(model,'EX_glc(e)',-1,'b'); % 'b' = 'both' boundaries

To simulate optimal ATP production, set the ATP maintenance reaction (ATPM) as the
objective to be maximized using changeObjective().

model = changeObjective(model,'ATPM');

ATPM is a stoichiometrically balanced reaction that hydrolyses ATP (atp[c]) and produces
ADP (adp[c]) + inorganic phosphate (pi[c]) + a proton (h[c]). It works as an objective
for maximizing ATP production because in order to consume the maximum amount of ATP,
the network must first produce ATP by the most efficient pathways available. In order to
maximise it, the constraint on this reaction should be removed by using changeRxnBounds()
to set the lower bounds to 0. By default, this reaction has a lower bound of 8.39 mmol gDW−1

hr−1 to simulate non-growth associated maintenance costs.

model = changeRxnBounds(model,'ATPM',0,'l');

You are now ready to optimise the model and display the solution.

FBAsolution = optimizeCbModel(model,'max');
disp(FBAsolution.f)

Question
Compute and comment the ATP yield per mole of glucose under aerobic and anaerobic
conditions.

Exercise 4: Simulation of the maximum growth rate following
genetic perturbations

Using the function changeRxnBounds() you can block any particular reaction in a genome-
scale model by setting both bounds to 0. For example:

Page 7



model = changeRxnBounds(model,'ACKr',0,'b');

Question
Determine the E. coli growth rate on glucose or lactate using the core metabolic network
after the losses of function indicated below.

Main carbon Substrate uptake rate Aerobic Loss of function Growth rate
substrate (mmol gDW−1 hr−1) growth (mutation) (hr−1)
D-glucose 10 Yes ACKr
D-lactate 20 Yes ACKr
D-glucose 10 Yes PPCK
D-lactate 20 Yes PPCK
D-glucose 10 Yes TPI
D-lactate 20 Yes TPI
D-glucose 10 Yes ATPS4r
D-lactate 20 Yes ATPS4r

Exercise 5: Alternate optimal solutions: flux variability analy-
sis

The flux distribution calculated by FBA is most usually not unique. In most cases, it is
possible for a biological system to achieve the same objective value by using alternate path-
ways, so phenotypically different alternate optimal solutions are possible. A method that
uses FBA to identify alternate optimal solutions is Flux Variability Analysis (FVA). This
is a method that identifies the maximum and minimum possible fluxes through a particular
reaction with the objective value constrained to be close to or equal to its optimal value.
Performing FVA on a single reaction using the basic COBRA Toolbox functions is simple.
The COBRA Toolbox also includes a built-in function for performing global FVA called
fluxVariability(). For instance, to run flux variability for growth of E. coli on succinate,
we use the following commands:

model = changeRxnBounds(model,{'EX_glc(e)' 'EX_succ(e)'},[0 -20],'l');
[min_flux max_flux] = fluxVariability(model);

Question
Perform FVA on the core E. coli model for growth on succinate and fill in the table below

Page 8



with the minimal and maximal flux values. Comment on the multiplicity of FBA solutions.

Reaction Minimum flux Maximum flux
(mmol gDW−1 hr−1) (mmol gDW−1 hr−1)

FRD7
MDH
ME1
ME2
NADTRHD
PPCK
PYK
SUCDi

Page 9


