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MICROCOSME: bacterial systems biology

• MICROCOSME: systems biology group at INRIA/Université

Grenoble Alpes in Grenoble

Microbiologists, computer scientists, mathematicians, physicists, …

• Objective: analysis, engineering, and control of the growth 

of bacteria

– Specific research problems shaped by biological questions

– Problems often addressed by combination of models and 

experiments
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https://team.inria.fr/microcosme
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Bacteria

• Bacteria were first observed by Antonie van Leeuwenhoek, 

using a single-lens microscope of his own design



Bacteria are complex living systems

• Bacterial cells are complex

biochemical and biophysical

machines

– Wide range of shapes, typically

0.5-5 µm in length

– 106 bacterial cells in 1 ml of fresh

water

– About as much bacterial cells as 

human cells in human body
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Goodsell (2010), The Machinery of 

Life, Springer, 2nd ed.



Bacteria are complex living systems

• Bacterial cells are complex 

biochemical and biophysical 

machines

• Bacteria possess 

characteristics shared by 

most living systems:

– Metabolism

– Growth and reproduction

– Differentiation

– Communication

– Evolution
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Madigan et al. (2003), Brock Biology of 

Microorganisms, Prentice Hall, 10th ed.



Bacterial growth and metabolism

• Bacteria are unicellular organisms geared towards

growth and division

Escherichia coli cells have doubling times up to 20 min 

Stewart et al. (2005), PLoS Biol., 3(2): e45

• Metabolism fuels growth by production of energy and building 

blocks for macromolecules, using nutriments from environment

ATP, amino acids, nucleotides, …

6



Bacterial growth and metabolism

• Central carbon metabolism breaks 

down carbon sources for energy

production and macromolecular

synthesis

Glucose, acetate, lactose, …

Fischer et al. (2004), Anal. Biochem., 325(2):308–16
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Bacterial growth and metabolism

• Central carbon metabolism breaks 

down carbon sources for energy

production and macromolecular

synthesis

Glucose, acetate, lactose, …

• Enzymes catalyse individual steps in 

metabolic network

Pyruvate kinase transforms

phosphoenolpyruvate (PEP) into

pyruvate
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Bacterial growth and metabolism

• Central carbon metabolism breaks 

down carbon sources for energy

production and macromolecular

synthesis

Glucose, acetate, lactose, …

• Enzymes produced from information 

encoded in genes

– pykF is gene encoding pyruvate kinase
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Bacterial growth and metabolism

• Central carbon metabolism breaks 

down carbon sources for energy

production and macromolecular

synthesis

Glucose, acetate, lactose, …

• Enzymes produced from information 

encoded in genes

– pykF is gene encoding pyruvate kinase

– Expression of pykF regulated by 

transcription factor Cra
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Bacterial growth and metabolism

• Bacterial metabolism is flexible, allowing cells to grow on 

different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose

• Adaptation of bacterial physiology to different carbon sources

Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84
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Growth transition and metabolism

• Adaptation to different carbon source involves changes in 

metabolic fluxes

Flux distributions in central metabolism of E. coli during growth on 

different carbon sources
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Gerosa et al. (2015), Cell Syst., 1:270-82



Growth transition and metabolism

• Adaptation to different carbon source involves changes in 

metabolite concentrations

Fluxes and concentrations in central metabolism of E. coli during

growth on different carbon sources
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Gerosa et al. (2015), Cell Syst., 1:270-82



Growth transition and metabolism

• Adaptation to different carbon source involves changes in 

gene expression

Transcript levels of genes encoding enzymes in central metabolism

of E. coli during growth on different carbon sources
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Gerosa et al. (2015), Cell Syst., 1:270-82



Adaptation on multiple levels

• Adaptation to different carbon source 

involves adjustments on multiple 

levels at the same time!

Parallel measurement of enzyme and 

metabolite concentrations, and metabolic

fluxes in a variety of experimental

conditions
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Ishii et al. (2007), Science, 316(5284):593-7
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Ishii et al. (2007), Science, 316(5284):593-7



General question on cellular adaptation

• Cells are capable of responding to a variety of changes in 

their environment by adapting their physiology

Change in carbon source, starvation, population density, …

• On the molecular level, these responses involve adjustment

of metabolism and gene expression

Cellular concentrations of metabolites, enzymes, transcription factors, 

…

• Question: how does cell coordinate these adaptive 

responses?
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• Coordination of adaptative responses of bacterial cell

achieved by large and complex regulatory networks

18

Coordination of adaptative responses

Kotte et al. (2010), Mol. Syst. Biol., 6: 355

– Variety of molecular mechanisms…

– … operating on different time-

scales…

– … involving numerous feedback 

loops across levels



• Coordination of adaptative responses of bacterial cell achieved

by large and complex regulatory networks

• Abundant knowledge on biochemical mechanisms underlying

interactions between network components

• Accumulation of data on multi-level response of network to 

external perturbations

Metabolic fluxes and cellular concentrations of metabolites, enzymes, 

transcription factors, signalling molecules, …

• However, global view on functioning of  entire network is

difficult to achieve and largely absent today

No global view on network functioning
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Mathematical models and systems biology

• Regulatory networks are complex nonlinear dynamical

systems, evolving on different time-scales

• Challenge: can mathematical models and computer tools

help us understand how these systems function?

– Integration of interaction structure and heterogenous data sources 

into mathematical models

– Use of models to analyse and predict dynamical behaviour of system

– Emergence of new discipline: systems biology…
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Alon (2007), An Introduction to Systems Biology, Chapman & Hall/CRC Press



Historical note

• Systems biology, and more particularly the mathematical 

modeling and computer simulation of biochemical reaction 

networks, have a long history

• Simulation of metabolic pathways (glycolysis)

• Modeling of gene regulatory networks
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Westerhoff and Palsson (2004), Nat. Biotechnol.,22(10):1249-52

Garfinkel et al. (1970), Ann. Rev. Biochem., 39:473-98

Goodwin (1963), Temporal Organization in Cells, London



Mathematical modeling of biochemical 

reaction networks

• Well-established framework for modeling of biochemical 

reaction networks using ordinary differential equation 

(ODE) models

• General form of ODE models of biochemical reaction 

networks

– Concentration variables

– Reaction rates                            

– Stoichiometry matrix

• Various forms of kinetic rate laws: mass-action, Michaelis-

Menten, Hill, Monod-Wyman-Changeux, …
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall
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• Model of uptake of carbon sources (glucose, lactose, 

glycerol, …) by E. coli

− Several dozens of equations and more than a hundred parameters, 

many of them unknown or unreliable

− Mostly metabolic modules

Bettenbrock et al. (2005), J. Biol. Chem., 281(5): 2578-2584

Example of network modeling
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• Estimation of parameter values from time-series

measurements of metabolite concentrations on wild-type 

and mutant strains

Bettenbrock et al. (2005), J. Biol. Chem.,  

281(5): 2578-2584

Example of network modeling

• Model has good 

predictive capability



Issues in mathematical modeling

• Mathematical models are used for explanation, prediction, 

and control

• Modeler confronted with several practical problems

– Models of actual networks are large systems of nonlinear ODEs

– Parameter values are generally unknown and difficult to measure 

directly

– Reaction mechanisms are often unknown

– Experimental measurements of variables are scarce, noisy, and 

indirect

• This raises issues in model reduction and approximation, 

parameter estimation, network inference, data analysis, ...

• But also: issues in experimental data acquisition
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Fluorescent reporter genes

• Use of fluorescent reporter genes

allows expression from host promoter to 

be monitored in vivo and in real time

– Different colors (emission peaks): GFP, YFP, 

RFP, …

– Reporter genes on plasmids and on 

chromosome

– Transcriptional and translational

reporters

• Library of fluorescent transcriptional

reporter genes in E. coli

Zaslaver et al. (2006), Nat. Methods, 3(8):623-8
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Single-cell microscopy

• Monitoring of gene expression in single cells using

fluorescent reporters, automated time-lapse microscopy, 

and image analysis

• Monitoring onset of competence in B. subtilis
Süel et al. (2006), Nature, 440:545-50
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Single-cell microscopy
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Single-cell microscopy and microfluidics

• Microfluidic trapping devices for long-term acquisition of 

single-cell data

• Microfluidic devices allow tight control of environmental 

perturbations
Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840

Bennett and Hasty (2009), Nat. Rev. Genet., 10(9):628-38
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Single-cell microscopy and microfluidics

• Microfluidic trapping devices for long-term acquisition of 

single-cell data

• Microfluidic devices allow tight control of environmental 

perturbations
Izard, Gomez Balderas et al. (2015), Mol. Syst. Biol., 11:840
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Objective of course "Modeling of biological 

networks"

• Course objective is to learn the modelling of cellular 

networks, in particular metabolic networks and gene

regulatory networks

– Both the theoretical foundations and concrete applications to diverse 

systems of biological regulation

– Applications will rely on the practical use of computer tools for the 

modelling, analysis and simulation of biological networks
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Course program

• Part 1. Systems biology and kinetic modeling (courses 3 h)

– Introduction

– Kinetic modeling of biochemical reaction networks

• Part 2. Metabolic network modeling (courses and practical 9 h)

– Kinetic modeling of metabolism

– Metabolic control analysis (MCA)

– Flux balance analysis (FBA)

– Practical on flux balance analysis (COBRA)
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Course program

• Part 3. Gene regulatory network modeling (courses and 

practical 13 h)

– Quantitative modeling of gene regulatory networks 

– Qualitative modeling of gene regulatory networks 

– Stochastic modeling of gene regulatory networks 

– Practical on integrated models of bacterial growth (Matlab)

• Questions
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Course organisation

• Schedule: courses 4 h on Mondays/Tuesdays

• Credits: 2 units or 50 h:

– Courses: 25 h

– Self-study: 25 h

• Articles to read, associated with courses

• Contact: Hidde de Jong (Hidde.de-Jong@inria.fr) 

• Slides and articles will be made available on course web site

• Mailing list 5BIM and Master students?

• Exam on courses, practicals and articles (2h)

Course material allowed
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mailto:Hidde.de-Jong@inria.fr
https://team.inria.fr/microcosme/course-on-modeling-of-metabolic-and-gene-regulatory-networks-insa-de-lyon-2022-2023/


Thanks!

team.inria.fr/microcosme


