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* Objective: analysis, engineering, and control of the growth
of bacteria

— Specific research problems shaped by biological questions
— Problems often addressed by combination of models and

experiments



Overview

« Part 1. Systems biology and kinetic modeling

— Introduction
— Kinetic modeling of biochemical reaction networks

« Part 2. Metabolic network modeling

— Kinetic modeling of metabolism

— Metabolic control analysis (MCA)

— Flux balance analysis (FBA)

— Practical on flux balance analysis (COBRA)

e Part 3. Gene regulatory network modeling
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Bacterial growth and metabolism

e Bacterial metabolism is flexible, allowing cells to grow on
different carbon sources

Preferential utilisation: diauxic growth on glucose and lactose
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Bettenbrock et al. (2006), J. Biol. Chem., 281(5):2578-84

« Adaptation of bacterial physiology to different carbon sources




Coordination of adaptative responses

« Coordination of adaptative responses of bacterial cell
achieved by large and complex regulatory networks

— Variety of molecular mechanisms... (Changing) carbon

— ... operating on different time-
scales...
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No global view on network functioning

Coordination of adaptative responses of bacterial cell achieved
by large and complex regulatory networks

Abundant knowledge on biochemical mechanisms underlying
Interactions between network components

Accumulation of data on multi-level response of network to
external perturbations

Metabolic fluxes and cellular concentrations of metabolites, enzymes,
transcription factors, signalling molecules, ...

However, global view on functioning of entire network is
difficult to achieve and largely absent today

Use of models to analyse and predict dynamical behaviour of
system
Emergence of new discipline: systems biology




Growth of microbial populations

* Growth can be considered on the level of number of
Individual cells or aggregated volume of growing
population Vol [L]

Segregated vs nonsegregated models




Growth of microbial populations

* Ordinary differential equation (ODE) model of the growth of a
population of microorganisms
Growth rate g [h™!]

Vol = i - Vol

« Solution of growth model for constant growth rate u = u*
Vol(t) = Vol(0) - et

Doubling time ¢/9 = In2/pu*
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rowth of microbial populations

If all cells have same growth rate, segregated and
nonsegregated models are identical

But: growth rate of cells in population may be heterogeneous
— Bacterial persistence after antibiotics treatment

B Microfluidic device
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Balaban et al. (2004), Science, 305(5690):1622-5 ‘
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Growth of microbial populations

 |f all cells have same growth rate, segregated and
nonsegregated models are identical

« But: growth rate of cells in population may be heterogeneous
— Bacterial persistence after antibiotics treatment

C 0:00 D 0:59 E 1:45 F 6:50 G 7:38 H 8:39
Growth medium (GM1) [Ampicillin (A)|  Growth medium (GM2)

Balaban et al. (2004), Science, 305(5690):1622-5 ‘




Growth of microbial populations

 If all cells have same growth rate, segregated and
nonsegregated models are identical

« But: growth rate of cells in population may be heterogeneous

— Bacterial persistence after antibiotics treatment
— Persister cellss have lower growth rate before antibiotics treatment
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Volume and macromolecular contents

* Growth is fueled by biochemical processes

* Models describing molecular constituents and biochemical
reactions in which they are involved
Structured vs unstructured models

VOI Ci: Cf




Volume and macromolecular contents

« Basic assumption: volume proportional to biomass (total
mass of molecular constituents in cells)

Dry mass of constituent i, C; [g]
Biomass B [g]

VOZNZC%ZB

* In other words, biomass density 1/§ [g L~!]is constant:

Vol=0-% C;j=06-B




Volume and macromolecular contents

« Assumption of constant biomass density supported by
experimental data

Biomass density approximately 300 g L=}
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Basan et al. (2015), Mol. Syst. Biol., 11:836-5
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Volume and macromolecular contents

« Concentration ¢; [g L] of molecular constituent i in
population: ¢i = C;y/ Vol

 If all cells have same concentration, then ¢; also applies to
iIndividual cells 5w
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Volume and macromolecular contents

. Concentration C; [g L™'] of molecular constituent i in
population: ¢i = Cy/ Vol

« If all cells have same concentration, then C; also applies to
iIndividual cells

« Consequence of proportionality of mass and volume: total
biomass concentration Is constant

Y =) Ci/Vol=B/Vol =1/§




Volume and macromolecular contents

 ODE model of dynamics of molecular constituent i
» Exercise: write down expression for dc,/dt = ¢; using its

C; — C@/ Vol

definition




Volume and macromolecular contents

 ODE model of dynamics of molecular constituent i :
Ci- Vol—Ci- Vol C;  Cy Vol
Vol? Vol Vol Vol

C; =
e
" Vol

Appearance of term for growth dilution of individual constituents
* Growth rate follows from dynamics of molecular constituents

Vol B
Vol_(S Z Vol_(S Vol

— - Ci.

No growth dilution if mass of all constituents remains constant




Volume and macromolecular contents

« Growth dilution may have an important effect on the
concentration of cellular constituents
— Changes in rate of protein synthesis and decay of constitutive gene
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Volume and macromolecular contents

« Growth dilution may have an important effect on the
concentration of cellular constituents
— Changes in rate of protein synthesis and decay of constitutive gene

— Concentration of gene product is growth-rate dependent
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Biochemical reactions underlying growth

« Term C;/Vol represents net effect of biochemical reactions
on concentration of molecular constituent |

 Change of variables using MW: X; = C;/«a; [mol]
Rate of reactions based on physical encounters of molecules

x; = X;/ Vol
 ODE model of dynamics of molecular constituent i :
7Y R




Biochemical reactions underlying growth

» Reformulation of reaction rates X;/ Vol
— Rate of reactionj: v; [mol Lt h_l]
— Stoichiometry of constituent i in reactionj: N,

Yy

...- IN;; constituent i -...

Uj

...+IN;; constituent i +...

« Example2A+1B—-2C




Biochemical reactions underlying growth
« Stoichiometry matrix N describes structure of reaction

network
Internal reactions and exchange reactions, reversible and irreversible
(Y
"
N .
-1 0 0 0 0 O -1 0 o0 o] |
1 -1 1 0 0 o 0 -1 0 O] |4y
0 1 -1 -1 1 -1 o 0o of |us
00 0 1 -1 0 0 -1 0| |
000001000-11’1
bz
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s

Schilling et al. (2000), J. Theor. Biol., 203(3):229-48




Biochemical reactions underlying growth

+ Reformulation of reaction rates X;/ Vol

— Vector of reaction rates: v
— Stoichiometry of constituent i in reaction j: N,
— Vector of concentrations of molecular constituents: &

« Stoichiometry model of biochemical reactions

r=N-v—pu-x

- " ‘
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Biochemical reactions underlying growth

« Stoichiometry model of biochemical reactions

r=N-v—pu-x

« Expression of growth rate

C; X;
zé-Za@--Ni-v(aﬁ).

— Rate of accumulation of (mass of) constituents (within unit volume per
unit time) relative to total amount of constituents (within unit volume)

— Not ad-hoc definition, but derived from basic assumptions




Biochemical reactions underlying growth

 ODE model for growth of microbial populations:

* Reaction rates depend on concentrations x of substrates,
products, effectors




Enzyme kinetics

« Basic (irreversible) enzymatic reaction:

(o5} V3

S+E _' CcC — P+E

V2

« Exercise: What is the stoichiometry matrix for this system?
« Exercise: What is the corresponding ODE model?




Enzyme kinetics

« Basic (irreversible) enzymatic reaction:

(o5} V3

S+E _' CcC — P+E

V2




Enzyme kinetics

* Mass-action kinetics Is based on fundamental law for rate
of biochemical reactions
Rates are proportional to concentrations of reactants

StE T C —— P+E
U2
e(t) = —v1 +va+v3=—k¢-e(t) s(t)+ k- c(t)+ kear - c(t),
§(t) = —v1 +vo = —kys-e(t) s(t) + k- c(t),
C(t) =vi —va—v3=kys-e(t) s(t)—ky-c(t) — kear - c(t),

p(t) — U3 — kcat ) C(t)v
where the following conservation relations hold:

e(t) + c(t) = eo,
s(t) +c(t) + p(t) = s0, ¢(0) =0, p(0)=0.

rd
A UCA
. UniverSité A —
Grenoble Alpes



Enzyme kinetics

« Mass-action kinetics Is based on fundamental law for rate

of biochemical reactions
Rates are proportional to concentrations of reactants

v
—— C — P+E

« Exercise: What are the units of the parameters if
concentrations are expressed in mol L1?

« Exercise: How can the equation system be simplified using
the conservation relations? Hint: keep s and c

R —



Enzyme kinetics
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Enzyme kinetics

« Simplified equation system for enzymatic reaction:

5(t) = ks - (eg — c(t)) - s(t) + ky - c(1),
() = k- (eo — c(t)) - s(t) — (kr + kear) - c(t).

« Quasi-steady state assumption: ¢(t) =~ 0
* Quasi-steady state assumption leads to Michaelis-Menten

kinetics: K
S 5
) =v(s) =V, - :
- p=u(s) A K
S : P kr kca :
v Km — il ta Vm — kcat “€Q- 2
k¢ 0

0 20 40 60 80 100

« Exercise: Derive Michaelis-Menten equation




Enzyme kinetics
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Enzyme kinetics

Simplified equation system for enzymatic reaction:

5(t) = ks - (eg — c(t)) - s(t) + ky - c(1),
() = k- (eo — c(t)) - s(t) — (kr + kear) - c(t).

« Quasi-steady state assumption: ¢(t) =~ 0

* Quasi-steady state assumption leads to Michaelis-Menten
Kinetics

* Quasi-steady state assumption valid under certain
conditions on the parameters

Chen et al (2010), Genes Dev., 24(17):1861-75




Enzyme kinetics

* Michaelis-Menten kinetics for reversible enzymatic
reaction

Vit s/ K — Vi /Ko,
P U(SJ p) - uc 8/ . = p/ 2 >
1+ S/Kml + p/KmQ o

* Michaelis-Menten kinetics for reversible enzymatic reaction
with competitive enzyme inhibition - Noinhibitor

E+|«— E
S~ P

V+ S/Kml V_ p/KmQ
1—|—Z/K —|—8/Km1 —|—p/Km2

v(s,p,i) =

J £oo-| YA
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Enzyme kinetics

* Michaelis-Menten kinetics for reversible enzymatic
reaction

Vit s/ K — Vi /Ko,
P U(SJ p) - uc 8/ . = p/ 2 >
1+ S/Kml + p/KmQ o

* Michaelis-Menten kinetics for reversible enzymatic reaction
with competitive enzyme inhibition o nhibior

E+|«— E
S~ P

V+ S/Kml V_ p/KmQ
1—|—Z/K —|—8/Km1 —|—p/Km2

v(s,p,i) =

J £oo-| YA
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Enzyme kinetics

« Many other rate laws for enzyme kinetics have been
proposed

— Generalization to multiple substrates and products

— Thermodynamic view, separating enzyme-dependent from enzyme-
Independent properties

— Convenient mathematical approximations

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall
Cornish-Bowden (2004), Fundamentals of Enzyme Kinetics, Portland Press

« Rate laws for gene expression kinetics and signal
transduction kinetics introduced In later courses

R —



Growth in a changing environment

* No explicit model of the environment
Some reactions in v correspond to uptake of substrates or secretion

of products
* Environment modeled as bioreactor filled by liquid medium

of fixed volume ]
— Substrate/product concentrations in medium: y [g L_l]

— Volume of medium: Volpedivm |L]

[ B

. . submerged aeratar
Source: wikpedia
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Growth in a changing environment

* No explicit model of the environment

Some reactions in v correspond to uptake of substrates or secretion
of products

* Environment modeled as bioreactor filled by liquid medium
of fixed volume

— Substrate/product concentrations in medium: y (g L__l]
— Volume of medium: Volpedivm |L]

 ODE model for dynamics of substrate/product
concentrations in medium

y=ay - E-v(x,y)- (Vol/ Vol edium)

— Stoichiometry matrix for exchange reactions: E

— Diagonal matrix of molar mass coefficients: o,
I —



Growth in a changing environment

* No explicit model of the environment
Some reactions in v correspond to uptake of substrates or secretion
of products
* Environment modeled as bioreactor filled by liquid medium
of fixed volume

— Substrate/product concentrations in medium: y (g L__l]
— Volume of medium: Volpedivm |L]

 ODE model for dynamics of substrate/product
concentrations in medium

Vol 5 > Ci
Vol medium B VOlmedwm

y =0 oy, FE-v(x,y)-b.

— 5D,




Growth in a changing environment

 ODE model for growth of microbial populations:
t=N-v(r,y) —p-z,

y=0-qa, -F-v(x,y)-b,
p=0- ;- Ni-v(x,y),




Growth in a changing environment

 ODE model for growth of microbial populations:
= N-v(r,y)—p-mw,
y=20-ay-E-v(z,y)- b

p=6-) ai-Ni-v(a,y),

i):,u,-b,

* Model applies to batch cultivation, but can be easily adapted
for continuous culture or fed-batch culture

Bastin and Dochin (1990), On-Line Estimation and Adaptive Control of Bioreactors, Elsevier, 1990




Growth in a changing environment

* Bioreactor models have been mostly used in context of
biotechnological applications

« But: they also apply to complex natural environments, such
as digestive tracts of vertebrates and insects

Organ shape and location Example of organ Reactor shape Modelized reactor  Scheme
in horse digestivetract =~ names

Stomach (human)

Rumen (cow) Open sac-like reactor

Crop (hoazin)

Saccular forestomach

(kangaroo)

Proctodeum P3 (termite)

Closed sac-like reactor Batch reactor @
e intestine Large tubular reactor CSTR in series D'[H:lG
n)

Small intestine (human) Narrow tubular reactor  Plug-flow reactor

Tubiform forestomach
_ e = S
Godon et al. (2013), BioEnergy Res., 6(3):1063-81 Ql’\z
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell

E

Ra—eP=—=Py

TR
I \ Pl e s

- . -

M = My
M

M

H M )
2y’ T2gTM’  2RTI

FIGURE 7 An idealized sketch of the model of E. coli B/rA growing in a glucose-ammonium salts
medium with glucose or ammonia as the limiting nutrient. At the time showa the cell has just
completed a round of DNA replication and initiated cross-wall formation and a new round of DNA
replication. Solid lines indicate the flow of material, while dashed lines indicate flow of informarion.
Reproduced with permission from Shuler and Domach, 1983.

A, =ammonium ion M;, = messenger RNA
A, =glucose (and associated compounds in M, =DNA
the cell) M, =non-protein part of cell envelope (as-
W =waste products {CO;, H,;O, and ace- sume 16 7% peptidoglycan, 47.6%
tate) formed from energy metabolism lipid, and 35.7% polysaccharide)
duning acrobic growth M, = glycogen
P, = amino acids PG = ppGpp
P, = ribonucleotides E,, E4 = molecules involved in directing cross-
P; = deoxyribonucleotides wall formation and cell envelope
P, = cell envelope precursors synthesis—the approach used in the
M, = protein {both cytoplasmic and en- prototype model was used here but
velope) more recent experimental support s
D h | 1984 . h I . M, . = immature “stable” RN}: GIN arailable
- - M =mature “stable” RNA (r-RNA and r- = plutamine
omach et al. ( ), Biotechnol. Bioeng., 26(3):203-16 e = T “StbI” RNA ((RNA and v GIN-glutamine
out) *—the matenal is present in the cxternal environmena.
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell

. Model structure Count Examples
’ M Odel haS evo |Ved Into Compartmer G b Gytépiésm;fcellﬂmgmbﬁhﬁ-Whole cell, medium
minimal, functionally REE | GHARER, sl s
il e Fructose-6P synthesis, CTP synthesis
C O m p | et e m O d eI Of Rate parameters 570 M.ass action or Michaclis—Mcntcn rate constants
Satﬁiﬁt'iiah- parameters AR AR chhachschnten-likcs;\nuaﬁon parameters

C h e m O h ete rOt ro p h I C Inhxbmon ;arametcrs 55 -I\I/Iicha.elis-—Mvcnten-like inhibition parameters
. Rat;u xu(es BRI ’ﬁieﬂzyiiﬁ%ﬁ state of chromosome’
bacterium :

1 Ccll Wldth (CW)
PSR o oA
Constraints 408
e 0
Smgle codmg gcncs
o -

Sz T A ¥ [T EAEERER R e R
Gcnes in clustcrs Ribosomal proteins, dnak, etc.

Shuler et al. (2012), Methods Mol. Biol., 881:573-610
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Towards integrated models of the cell

* Integrated models of the cell are emerging, but some
Interesting precursors exist
Coarse-grained model of an E. coli cell

 Model has evolved into
. . . .— - = ] Precursors | - :
minimal, functionally o o s o

lons q '

complete model of
chemoheterotrophic
bacterium

Shuler et al. (2012), Methods Mol. Biol., 881:573-610
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Whole-cell model M. genitalium
« Metabolic networks are integrated with gene networks and

signalling networks
Complex multi-level system with feedback across different time-

S

RNA
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Ribosome Terminal organelle
assembly

“g'@- assembly
Protein,
transloca

scales
A External

environment

se
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Metabolism decﬂ,--'
\ @, ’ .. ‘IRNJ& i
K . aminoacylation
g ® RMNA processing Protei
“1 b-' ‘g’ w_ prmrgs,é?ng interaction
Host epithelium
Transcription T |
o ranscrépﬁonm Macromolegular . Translation
CDNA regulation complexation Protéin
upercollin modification .
# Prolsin o s

ivation

rEe)B‘la'?r‘ DNA
damage
Protein W Metabolites
& B RNA
"". B Protein
= B DNA

Chromosome
condensation

eplication
inttiation

FisZ
polymerizatio
Cytokinesis

Karr et al. (2012), Cell, 150(2): 389-401
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Whole-cell model of
Mycoplasma genitalium
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Whole-cell model M. genitalium

« Whole-cell model represents huge modelling effort:

— Whole-genome model including complete known metabolic, gene, and
signalling networks

100% 900+ 1900+ 28
of genes publications parameters processes

L L ] J
'

Metabolome

C__x7}<

]

L ¥ ) v
Predictive Novel Biological Rational
Karr et al. (2012), Cell, 150(2) 389-401 capacity hypotheses discovery design

— Variety of formalisms to model the 28 modules: FBA, kinetic ODE
models, Boolean models, Markov chains, ...

— Cell cycle simulated for >100 cells, >30 mutants on 128-core machine

Grenoble Alpes




Whole-cell model M. genitalium

« Whole-cell simulation of M. genitalium cell cycle




Whole-cell model M. genitalium

* Whole-cell simulations have provided new insights into
global use and allocation of energy

. . . A . C 200 Translation
— Transcription and translation most & - e o
:E 10% aTP 1mujM @
costly processes 3| K
- 3 0 | NAD(H) NADPH) ] e (1)
— Energy use largely independent of  § e g A zees
cell-cycle length 5 ) — é %M o
Time (h) Replication
— Usage of almost half of produced & R Q)
energy not accounted for! o eer DR v (@)
E -’ o ; %23 RNApomid'ﬁ ti . @
e R 3 o] i (D)
E SGM : 12 14 E ﬁqu)

Cell Cycle Length (h) ; m
R o
Ribosome assembly
o iy oot @

RNA processing

e il ©

o

W e T @

Karr et al. (2012), Cell, 150(2): 389-401 0.005-Chromosome segregation
(2012) @ e " @

0 4 8
Time () L
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Whole-cell models

* Whole-cell models help analyze the dynamics of interactions
between multiple functions of the cell
Models allow predictions to be confronted with experimental data and
performance of thought experiments
* But whole-cell models have problems as well!

— Models difficult to construct, to debug and to maintain

— Huge number of parameters, many unknown: parameter estimation
IS a difficult problem requiring many data of high quality

— How do we extract fundamental insights on cell functioning from
large, mechanistic models?

Y &eon| UEA —



Whole-cell models

* Whole-cell models help analyze the dynamics of interactions
between multiple functions of the cell
Models allow predictions to be confronted with experimental data and
performance of thought experiments

« But whole-cell models have problems as well!

On Exactitude in Science
Jorge Luis Borges, Collected Fictions, translated by Andrew Hurley.

...In that Empire, the Art of Cartography attained such Perfection that the map of a
single Province occupied the entirety of a City, and the map of the Empire, the entirety
of a Province. In time, those Unconscionable Maps no longer satisfied, and the

Cartographers Guilds struck a [Map of the Empire whose size was that of the Empire Jand

which coincided point for point with it. The following Generations, who were not so
fond of the Study of Cartography as their Forebears had been, saw that that vast Map
was Useless, and not without some Pitilessness was it, that they delivered it up to the
Inclemencies of Sun and Winters. In the Deserts of the West, still today, there are
Tattered Ruins of that Map, inhabited by Animals and Beggars; in all the Land there is
no other Relic of the Disciplines of Geography.

—Suarez Miranda,Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658
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