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MICROCOSME: bacterial systems biology

• MICROCOSME: systems biology group at INRIA/Université

Grenoble Alpes in Grenoble

Microbiologists, computer scientists, mathematicians, physicists, …

• Objective: analysis, engineering, and control of the growth 

of bacteria

– Specific research problems shaped by biological questions

– Problems often addressed by combination of models and 

experiments
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https://team.inria.fr/microcosme



Overview

• Part 1. Systems biology and kinetic modeling

– Introduction

– Kinetic modeling of cellular reaction networks

• Part 2. Metabolic network modeling

– Kinetic modeling of metabolism

– Metabolic control analysis (MCA)

– Flux balance analysis (FBA)

– Practical on flux balance analysis (COBRA)

• Part 3. Gene regulatory network modeling
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Biochemical reaction networks

• ODE model for growth of microbial populations:

• Reaction rates depend on concentrations    of substrates, 

products, effectors
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Metabolic networks

• Focus on subsystems that can be studied in isolation due 

to modular structure of reaction networks

– Time-scale hierarchies

– Connectivity structure
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Kotte et al. (2010), Mol. Syst. Biol., 6: 355

• Metabolic networks

– Metabolites and enzymatic

reactions

– Short turn-over times of 

metabolite pools in comparison

with enzyme pools



Metabolic networks

• Models describing dynamics of metabolism

– Effect of growth dilution can often be ignored

– Variables are metabolites and rates of enzyme-catalyzed reactions

– Enzyme concentrations constant on time-scale of metabolic

dynamics

• Explicit introduction of dependency of model dynamics on 

parameters :

– Enzyme concentrations

– Half-saturation and catalytic constants

– Inhibition/activation constants
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Stoichiometry matrix

• Stoichiometry matrix      describes structure of reaction

network

Internal reactions and exchange reactions, reversible and irreversible
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Schilling et al. (2000), J. Theor. Biol., 203(3):229-48



Stoichiometry matrix

• Stoichiometry matrix may not be full rank

– Dependencies between rows (variables) due to conservation relations

– Example: [ATP] + [ADP] + [AMP] = constant

• Reduction of stoichiometry matrix by means of link matrix    :

• Variables in resulting metabolic system are independent

• In what follows, we assume that is full rank
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Metabolic networks at steady state

• For many problems of interest, the metabolic system can be

considered at steady state

– Metabolism relaxes on short time-scale (seconds-minutes) after

changes in environment

– Difficult to measure dynamics of metabolic adaptation

• Metabolic rates at steady state: fluxes

• Trivial steady state with zero fluxes corresponds to 

thermodynamic equilibrium

• Steady state with non-zero fluxes requires that metabolic

system is open system

Non-zero exchange fluxes
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Stability of steady state

• Metabolism concerns almost exclusively sustainable

processing of chemical inputs into outputs

Biomass, energy, waste, …

• Therefore, one expects steady states to be stable

• Stability criterion given by sign of (real part of) eigenvalues

of Jacobian matrix

System is stable, if real part of every eigenvalue is negative
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Grimbs et al. (2007), Mol. Syst. Biol., 3:146

Kaplan and Glass (1995),  Understanding Nonlinear Dynamics, New York



Example of simple metabolic pathway

• Pathway of reactions converting substrate to product

– S and P are supplied/removed (constant concentrations)

– Reactions are reversible (Michaelis-Menten kinetics)

• Exercise: What is the stoichiometry matrix for this system?

• Exercise: How do the fluxes relate at steady state?

• Exercise: Write out the Jacobian matrix for this system

• Exercise: Determine the stability of the system. Hint: use 

the signs of the partial derivatives and the relation between

eigenvalues and trace/determinant
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Example of simple metabolic pathway
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Example of simple metabolic pathway
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Example of simple metabolic pathway

• Pathway of reactions converting substrate to product

– S and P are supplied/removed (constant concentrations)

– Reactions are reversible (Michaelis-Menten kinetics)

• Assumption: steady states are stable
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Metabolic control analysis

• Steady state of system is sensitive to (local) changes in 

enzyme concentrations or kinetic parameters
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Metabolic control analysis

• Steady state of system is sensitive to (local) changes in 

enzyme concentrations or kinetic parameters
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Metabolic control analysis

• Steady state of system is sensitive to (local) changes in 

enzyme concentrations or kinetic parameters

• Metabolic control analysis (MCA) aims at studying this

sensitivity in a systematic and rigorous manner

• MCA applies to arbitrarily complex networks

• Central questions in MCA:

– How does the system steady state respond to changes in enzyme 

concentrations or kinetic parameters?

– How does the system response depend on the network structure?

– How constrained are sensitivities? Do they show dependencies?
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Sauro (2009), Chapter 13 in Jason McDermott et al. (eds.), Computational Systems Biology, Humana

Press, 269-309 

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Fell (1997), Understanding the Control of Metabolism, Portland Press



Elasticity coefficients

• Elasticity coefficients express how the rate of a reaction

changes due to a change in the reaction properties

– Change in substrate, product, enzyme, effector concentrations

– Change in kinetic parameter

• Elasticities are local properties of metabolic system

• Elasticities may vary with system state for complex rate laws

• Exercise: write elasticities with respect to change in enzyme 

concentration for irreversible Michaelis-Menten rate law
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Elasticity coefficients
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Response coefficients

• Response coefficients express how steady state of the 

system changes due to a change in reaction properties

– Flux response coefficients

– Concentration response coefficients

• Response coefficients are global properties of metabolic

system

• Response coefficients generally vary with system state

• Exercise: give examples of response coefficients for simple 

reversible pathway and their meaning
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Response coefficients
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Response coefficients

• Response coefficients express how steady state of the 

system changes due to a change in reaction properties

– Flux response coefficients

– Concentration response coefficients

• Response coefficients are global properties of metabolic

system

• Response coefficients generally vary with system state

• How can response coefficients be computed? How do they

relate to elasticity coefficients?
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Computation of response coefficients

• Differentiation of steady-state equation w.r.t.    :
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Computation of response coefficients

• Differentiation of steady-state equation w.r.t.    :
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Control coefficients

• Separation of reaction-specific and systemic contribution to 

response coefficient 

with concentration control coefficients

• Concentration control coefficients describe effect of change 

in rate (by whatever means) on steady-state concentration 
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Control coefficients

• Similar analysis for flux response coefficients leads to

with flux control coefficients

• Flux control coefficients describe effect of change in rate (by 

whatever means) on fluxes at steady state

• Above analysis provides conceptual framework, but is not 

very practical for computational purposes
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Summation and connectivity theorems

• Above analysis can be further developed into MCA 

summation theorems:

• Flux control is distributed over the system

• Idem for MCA connectivity theorems:
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Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall



Example of simple metabolic pathway

• Exercise: write down the flux summation and connectivity

theorems for the model of this pathway

• Exercise: find expressions for flux control coefficients in 

terms of elasticities. What can be learned from these

expressions?

28



Example of simple metabolic pathway
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Example of simple metabolic pathway
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Example of simple metabolic pathway

• Distributed control of enzymes over pathway flux

Contrary to idea of rate-limiting step
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Sauro (2009), Chapter 13 in Jason McDermott et al. (eds.), Computational Systems Biology, Humana

Press, 269-309 



Example of simple pathway with feedback

• Pathway with negative feedback on level of enzyme activity

• Question: in case of strong feedback, if we would like to 

increase production of P, which reaction should we target?
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Example of simple pathway with feedback

• Pathway with negative feedback on level of enzyme activity

• Question: in case of strong feedback, if we would like to 

increase production of P, which reaction should we target?

• Answer: reaction 3 (counter-intuitive)
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Sauro (2009), Chapter 13 in Jason McDermott et al. (eds.), Computational Systems Biology, Humana

Press, 269-309 



In-vitro reconstruction of glycolysis

• Upper part of glycolysis pathway has been reconstructed in 

vitro and quantitatively modeled
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Fiévet et al. (2006), Biochem. J., 396:317–26  



In-vitro reconstruction of glycolysis

• Upper part of glycolysis pathway has been reconstructed in 

vitro and quantitatively modeled

• How does flux respond to change in enzyme concentration?

• Positive flux control coefficients for all enzymes, as expected

from theoretical analysis
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Fiévet et al. (2006), Biochem. J., 396:317–26  



In-vitro reconstruction of glycolysis

• Upper part of glycolysis pathway has been reconstructed in 

vitro and quantitatively modeled

• How does flux respond to change in enzyme concentration?

• How can flux be optimized for given total enzyme 

concentration?

• Maximum attained for intermediate enzyme concentrations
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Fiévet et al. (2006), Biochem. J., 396:317–26  

Data Model



In-vivo control of glycolytic flux

• How is flux through glycolysis controlled in bacteria? What is

role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

• Approach: augment intracellular ATP consumption

Inducible (uncoupled) ATPase activity
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Koebmann et al. (2002), J. Bacteriol., 184(14):3909-16  



In-vivo control of glycolytic flux

• How is flux through glycolysis controlled in bacteria? What is

role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

• Approach: augment intracellular ATP consumption

• Metabolic control analysis of simplified system
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• ATPase overexpression

decreases growth rate and 

increases glycolytic fluxes



In-vivo control of glycolytic flux

• How is flux through glycolysis controlled in bacteria? What is

role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

• Approach: augment intracellular ATP consumption

• Metabolic control analysis of simplified system

39

• Experimental determination

of elasticities



In-vivo control of glycolytic flux

• How is flux through glycolysis controlled in bacteria? What is

role of ATP demand?

ATP produced by glycolyis and consumed by other cellular processes

• Approach: augment intracellular ATP consumption

• Metabolic control analysis of simplified system
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• Experimental determination

of elasticities

• In wild-type cells at least 

75% of glycolytic control 

exerted by ATP demand



Conclusions

• Metabolic systems often analyzed at (stable) steady state

• Metabolic flux analysis (MCA) quantifies sensitivity of fluxes 

and concentrations to changes in parameters and inputs

• Well-established and powerful mathematical framework

• Dedicated computer tools supporting the analysis

• Many applications demonstrating its practical use in systems

biology and synthetic biology/metabolic engineering
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Thanks!

team.inria.fr/microcosme


