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—|UNIVERSITY isT. 1826

Mike Mesarovic in “ System Theory and Biology” , 1968:

“The real advance in the application of systems theory

to biology will come about only when the biologists

start asking questions which are based on the syste m-
theoretic concepts rather than using these concepts to
represent in still another way the phenomena which are
already explained in terms of biophysical or biochemical
principles.

Then we will [...] have [...] a field of Systems Biology”




Key issues in SB

Dynamics, feedback, optimality




Optimization




Optimization

To OPTIMIZE: “to make as perfect, effective, or functional
as possible’ (Webster Dictionary)

Model-based Optimization:

To find the best solution, from the set of all the possible
ones, in an efficient and systematic way, using model-
based simulation to evaluate candidate solutions

In general, it implies finding the best compromise among

several conflicting demands




Structure of an optimization problem

Decision variables

Find

7o Minimize (or Maximize)

Objective function

Subject to

(requirements)




= Origins: classical theory of calculus

Fermat, Newton, Euler;, Lagrange,...
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Optimization in biology

Living organisms have evolved to maximize their
chances for survival (Darwin)




NATURE|Vol 4352 June 2005

The best solution

Optimization: this beguilingly simply idea allows biologists not only to understand current
adaptations, but also to predict new designs that may yet evolve.

William J. Sutherland

“If one way be better than another,
that you may be sure is nature’s way”
Aristotle clearly stated the basic
premise of optimization in biology,
yet it was almost 2,000 years before
the power of this idea was appreci-
ated. The essence of optimization is
to calculate the most efficient solu-
tion toa given problem, and then to
test the prediction. The concept has
already revolutionized some aspects
of biology, but it has the potential for
much wider application.

Of course, optimization has long
been emploved effectively in subjects
other than biology. Economists have

“...in a context of increasing calls
for biology to be predictive,
optimization is the only approach
biology has for making
predictions from first principles.”

Revealed: optimal-design theory can be used to assess how selective forces have shaped teeth,

traditionally calculated the options
that result in the greatest profit, and engi-
neers routinely calculate the best design
solution, such as the strongest bridge of a
given weight.

Darwins theory of natural selection
provided an obvious mechanism for
explaining optimization in biology: more
efficiently designed individuals will leave
more offspring. But it was another century
before biologists calculated optimal solu-
tions. David Lack pioneered its use in biol-
ogy with his concept of the optimal clutch
size — the number of eggs that would pro-
duce the greatest numbkr of offspring.

The use of optimization has allowed
biologists to move from merely describing
patterns or mechanisms to being able to
predict, from first principles, how organ-
izms should be designed. Optimality mod-
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Sutherland, W.J. (2005) The best solution.

optimal. Actually, it is the assumptions of
optimality that are tested. The failure to
find support for a prediction can be used
to determine whether an assumption is
wrong. For example, if animals do not
select the diet that maximizes energy
intalke, it may be because they are choosing
a diet that optimizes a balance of different
components, or that avoids the costs asso-
ciated with obtaining larger prey. Once
such possibilities have been identified, a
new theory can be devised and its predic-
tions tested. It has been argued that this
process is circular but in practice it is no
different from the successive predicting
and testing that underlies most science.

A recent example of the insight that
optimization can provide concerns the
design of mammalian mouths. It is possi-

tools. Further calculations give the predic-
tion that the reduction in molars and pre-
molars depends on the cube root of the
drop in food toughness. On the basis of
these predictions, the changes caused by
cooking would have to be vast to match
the changes caused by tool use. As pre-
dicted, although all teeth have become
reduced, the face and incisors have
become proportionately smaller. This
means the mouth can no longer accom-
modate the molars, hence the squeezed or
missing third molars (wisdom teeth) of
many modern humans.

A considerable strength of using opti-
mization is that once we understand why
organisms are as they are, then it should
be possible to understand how they will
respond to new conditions. Optimization
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Nature 435:569



Optimization in
biochemical pathways
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Models in Systems Biology

(a) Interaction-based (b) Constraint-based (c) Mechanism-based

LN

Static models Static models Dynamic models
Mo stoichiometry Stoichiometry Stoichiometry

No parameters MNo parameters Kinetic parameters

1

Concentration

Current Opinion in Microbiology

Stelling, J. (2004) Current Opinion in Microbiology, A5), 513-518.




Examples of applications of optimization in systems

Problem type or application

Description

Examples with references

Linear programming (LF)

MNeonlinear programming (NLFP)

Semidefinite programming (SDP)

Bilevel optimization (BLO)

Mixed integer linear programming (MILP)

Mixed integer nonlinear programming (MINLP)

Parameter estimation

Dynamic optimization (DQ)

Mixed-integer dynamic optimization (MIDO)

linear objective and constraints

some of the constraints or the objective
function are nonlinear

problems over symmetric positive semidefinite
matrix variables with linear cost function and
linear constraints

objective subject to constraints which arise
from solving an inner optimization problem

linear problem with both discrete and
continuous decision variables

nonlinear problem with both discrete and
continuous decision variables

model calibration minimizing differences
between predicted and experimental values

Optimization with differential equations as
constraints (and possible time-dependent
decision variables)

Optimization with differential equations as
constraints and both discrete and continuous
decision variables (possibly time-dependent)

maximal possible yield of a fermentation [83];
metabolic flux balancing [18,83]: review of flux
balance analysis in [30]; use of LP with genome
scale models reviewed in [27]; inference of
regulatory networks [40,42]

applications te metabolic engineering and
parameter estimation in pathways [69];
substrate metabolism in cardiomyocytes using
13C data [84]; analysis of energy metabolism
[85]

partitioning the parameter space of a model
into feasible and infeasible regions [B6]

framework for identifying gene knockout
strategies [87]; optimization of metabolic
pathways under stability considerations [88];
optimal profiles of genetic alterations in
metabolic engineering [89]

finding all alternate optima in metabolic
networks [90,91]; optimal intervention
strategies for designing strains with enhanced
capabilities [91]; framework for finding
biolagical network topologies [47]; inferring
gene regulatory networks [41]

analysis and design of metabalic reaction
networks and their regulatory architecture
[92,93]; inference of regulatory interactions
using time-course DNA microarray expression
data [45]

turorial focused in systems biology [53];
parameter estimation using global and hybrid
methods [52,54,55,59,70]; parameter
estimation in stochastic models [58]
discavery of biological network design
strategies [94]; dynamic flux balance analysis
[29]; optimal control for medification of self-
organized dynamies [95]; optimal experimental
design [66]

computational design of genetic circuits [76]

Banga, J.R. (2008). Optimization in computational systems biology. BMC Systems Biology 2:47.

biology
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= Linear Programming (LP)

= Non-linear Programming (NLP)

= Mixed-integer NLP (MINLP)

= Dynamic Optimization (optimal control)

= Mixed Integer Dynamic Optimization




Optimization in systems biology: types of applicati ons

Model building Inference

_—

Analysis Optimal control




Optimization in systems biology: examples of applic ations

/| Model building Inference

e Parametric identification e Reverse engineering
e Optimal experimental design e Inference of regulation
e Design principles

Optimization

Analysis Optimal control

e Flux Balance Analysis e Design/re-design of pathways
e MO-FBA e Optimal manipulation
e Dynamic analysis (dFBA)
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Models in Systems Biology

(a) Interaction-based (b) Constraint-based (c) Mechanism-based
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Static models Static models Dynamic models
Mo stoichiometry Stoichiometry Stoichiometry

No parameters MNo parameters Kinetic parameters

1

Concentration

Current Opinion in Microbiology

Stelling, J. (2004). Mathematical models in microbial systems
biology. Current Opinion in Microbiology, A5), 513-518.




Convex Optimization

= Linear Programming (LP)

Find x to
minimize f(x)=c*x

subject to Ax<=b

= where are
Is the

= LP: linear f(x) & linear constraints




Flux Balance Analysis

Network Allowable
reconstruction solution space
Genomics, physiology

and biochemistry v A

Application of
constraints

Energy and
biomass constituents

Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating
the consequences of constraints, Nature Reviews Microbiology, 2:886-897(2004).




Flux Balance Analysis

If we assume the organism is optimizing a 1 Identifying optimal
certain objective function (e.g., maximizing solutions , optinal

biomass), we get an optimal solution by \:am.;ﬂm
solving a

LINEAR PROGRAMMING (LP) problem

And we can do this for genome-scale models!

Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating
the consequences of constraints, Nature Reviews Microbiology, 2:886-897(2004).
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Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating the consequences of
constraints, Nature Reviews Microbiology, 2:886-897(2004).
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To which extent can optimality principles describe the operation of metabolic networks? By explicitly
considering experimental errors and in silico alternate optima in flux balance analysis, we
systematically evaluate the capacity of 11 objective functions combined with eight adjustable
constraints to predict "“C-determined in vive fluxes in Escherichia coli under six environmental
conditions. While no single objective describes the flux states under all conditions, we identified two
sets of objectives for biologically meaningful predictions without the need for further, potentially
Elyiw B Rt e nlimited growth on glucose in oxygen or niirate respiring baich culiures is
best described by nonlinear maximization of the ATP vield per flux unit. Under nutrient scarcity in
ontinuous culiures, in contrast, linear maximization of the overall ATP or biomass vields achieved
R g AT TR T T S ince these particular objectives predict the system behavior without
preconditioning of the network*tructure, the identified optimality principles reflect, to some extent,
the evolutionary selection of metabolic network regulation that realizes the various flux states.
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Multi- @ity etiives FH L B Emee Araliys s ((MOHBRAY)

Motivation for MOFBA

Flux Balance Analysis (FBA): determination of flux distribution by
optimizing a single (usually linear) objective function (typically, growth or
biomass vield).

Other objectives (linear as well as non -linear) are possible, often
conflicting each other, e.g. maximization of ATP, minimization of overall
intracellular flux, etc.

Main Idea: fluxes are distributed to optimize simultaneously two or
more biological objective functions, i.e. Multi-Objective FBA

Obijective: to find a set of optimal trade-offs between different criteria
(Pareto Optimal-Set )




Multi- @ity etiives FH L B Emee Araliys s ((MOHBRA)

The aim of MOFBA is to find the values of the fluxes v which maximize/minimize
simultaneously a set of p objective functions subject to a number of equality and
inequality constraints (mass-balance equations, bounds on fluxes, ...).

min/ max| Z,(v),Z,(v), - Z, )] Z, = objective function|

_ S = stoichiometric matrix (m x n)
subject to: m = number of metabolites
V=0 n = number of reactions (fluxes)

- vt, vY = lower and upper bounds

vi<sv<svW

Additional constraints can be imposed to reflect biological knowledge and other physiological restrictions




Multi- @ity etiives FH L B Emee Araliys s ((MOHBRA)

= Stoichiometric Matrix S Multi-Objective Methods
= Define objectives and = Normal Boundary Intersection (MBI
constraints .

= yyeighted Sum Approach

" = Constraint

Optimize each objective = Min-Max Formulation
separately =2 ;% Z.% .
{(similar to traditional FEA)

Optimization Solvers
(single-objective)
Transform the original MOF

" glpk iLPs, MILPs) into standard single-objactive
= GLOBALmM (MNLPs) optimization problems

= MITS (MINLPs) _E__
I_’ Solve the resulting set of LPs, E:) Anﬂllhfls of J
! Solutions

MLPs, WILPs ar MIMNLFs




Multi-Objective Optimization of Biological Networks for
Prediction of Intracellular Fluxes
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Abstract. In this contribation. we face the probiem of predicting intracellular Buxes wsing &
multi-crileria cptimization approach. Le. the simaltanecus opimization of tes or mone cellular
functions. Based on Flax Balonce Anslysis, we caboulate the Pareto set of oplimal flux distnibu-
tions in E. coli for three objectives: maximization of biomass and ATP. and minimization of
intracelinlar fluxes. These solatiens are able to predict Aox disinbations for different environ-
mental conditions withot requiring specific constraints, and improve previous pobiished
resmlts. W thus illustrate the usefalness of multi-ohjective optimization for 2 better understand-
ing of complex biological networks.

Keywords: Mulii-objective optimization. Pareto front, Flax Batance Analysis.

1 Introduction

Intraceliular fluxes in biochemical networks can be calculated in sifice under the as-
sumption that cellular systems operate in an optimal way with respect o a certain bio-
lpgical objective. Network capabilites and flux distributions have ths been predicied
by using. for example, Metabolic Flux Balance Analvsis (FBA), the fundomentals of
which can be found in e.p. (Vorma snd Palsson 1994). FBA only regoires the
stoichiometric model of the network, bt since the linear system of mass balance
equalicns at steady-siate is generally onder-determined, appropriate celluler functions
{ohjectives) must be defined. as well as other possible pdditional constraints. to find a
unique solotion. Swecessful applications of FBRA inclide the prediction of E oolfi
metabolic capobilities (Edwards et al, 2001 ) and the gencme-scale reconstruction of
the metabolic network in 5. cerevisiae (Forster et ol. 2003,

In this context. a particularly interesting guestion which have begn addressed re-
cently in detui] (Schuete et al. 2007; Nielsen 2007) concerns the principles behind the
optimal biochernical network operation, ie.: “which are the criteria being optimized
in these systems™" By far. the most common objective considered is the muoimizs-
tion of growth (or biomass yield), althoush other crtena, such as maximization of
ATP yield (van Gaolik and Heijren 1995) or minimization of the overall intracellular
flux (Bonarios et al. 1996), have been proposed for different systems and conditions.

Since neither we nor nature have a single poal. & more desirsble and realistic ap-
proach is o consider the simulinneous optimization of two or more chtena, often con-
flicting. As o consequence. the solution will not be unigue bul instead this strategy

1. Carchaodo (Bds. - IWPACHE 2008, ASC 59, pp. 197205, 2K,
sprinperfink.com & Springer-Verlag Berlin Heidelherg 2{0%

Sendin, J.0.H., Alonso, A. A., & Banga, J. R. (2009). Multi-objective optimization of biological
networks for prediction of intracellular fluxes. Advances in Soft Computing 49, pp. 197-205




Optimization in systems biology: examples of applic ations

{ Model building Inference

e Parametric identification e Reverse engineering
¢ Optimal experimental design e Inference of regulation
¢ Design principles

J

Analysis Optimal control

e Flux Balance Analysis ¢ Design/re-design of pathways
e MO-FBA e Optimal manipulation

¢ Dynamic analysis (dFBA)

J




Models in Systems Biology

(a) Interaction-based (b) Constraint-based (c) Mechanism-based
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Static models Static models Dynamic models

Mo stoichiometry Stoichiometry Stoichiometry

No parameters MNo parameters Kinetic parameters
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Current Opinion in Microbiology

Stelling, J. (2004). Mathematical models in microbial systems
biology. Current Opinion in Microbiology, A5), 513-518.
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Optimization in systems biology: examples of applic ations

{ Model building Inference

e Parametric identification e Reverse engineering
¢ Optimal experimental design e Inference of regulation
e Design principles

Optimization

Analysis Optimal control

e Flux Balance Analysis e Design/re-design of pathways
e MO-FBA e Optimal manipulation
e Dynamic analysis (dFBA)




Model building

b5 07 dv nn 13 05 17
Experiment

Solver

w(p.t) = flr(p.t).ult). pl. (0) = o,

yip.t) = glx(p.t). uip.t). p|

Dists Anslysis

] S ——————
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Fitted Model




Model building

Optimal Experimental Design Identifiability Analysis

Parameter

\ Estimation

s 07 09 LI L3 LS LY 1

Experiment .

Solver
Identifiability Analysis Fitted Model

N B L e e o .

ylp.t) = gle(p.t). ulp.t). p|




ITERATIVE IDENTIFICATION PROCEDURE
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Model or
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| Practical

: ¢ t identifiability
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Invalidation | :
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5 Experimental |.-sidentifiability i : |
i apriori il

Experiments

Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010) BMC Systems Biology 4:11




Parameter estimation

Possible pitfalls and difficulties (schitkowski, 2002)

« Convergence to a local solutions (with standard local

methods)

<« Narrow curved valleys

« Very flat objective function in the neighbourhood of a
solution

« Over-determined models, leading to many solution
vectors

« Bad starting values for parameters

« Badly scaled model functions

< Non-differentiable model functions

Klaus Schitthowski

NUMERICAL DATA
FITTING
DYNAMICAL
SYSTEMS




Parameter estimation

Local methods (L-M, G-N, etc.) may converge to local
optima...

If one gets a bad fit, there is a Key Question:

Is my model wrong, or has my solver failed?

» Need of Global Optimization methods
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Abstract

Background: We consider the problem of parameter estimation (model calibration) in nenlinear
dynamic madels of biolegical systems. Due to the frequent ill-conditioning and multi-modaliy of
many of these problems, traditional local methods usually fail {unless initialized with very good
guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO)
methods have been suggested as robust alvernatives. Currently, deterministic GO methods can not
solve problems of realistc size within this class in reasenable computation dmes. In contrast,
certain types of stochastic GO methods have shown promising resules, although the computational
cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-
deterministic GO methods which could reduce computation time by one order of magnitude while

guaranteeing robustness. Our goal here was to further reduce the computational effort without
lonsing robusmess.
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Resules: We have developed a new procedure based on the scater search methodology for
nonlinear eptimization of dynamic medels of arbitrary {or even unknown) structure (i.e. black-box '
miadels). In this contribution, we describe and apply this nowvel metaheuristic, inspired by recent

- e

Hybrid method

developments in the field of operations research, to a set of complex identification problems and 103
we make a critical comparison with respect to the previous {above mentioned) successful methads.

Conclusion: Robust and efficient methods for parameter estimation are of key importance in CPU tlme (5)
systems biology and related areas. The new metaheuristic presented in this paper aims to ensure

the proper solution of these problems by adopring a global optimization approach, while keeping

the computational effort under reasonable values. This new metaheuristic was applied to a set of

three challenging parameter estimaton problems of nonlinear dynamic biclogical sysems,

outperforming very significantly all the methods previously used for these benchmark problems.

Rodriguez-Fernandez, M., J. A. Egea and J. R. Banga (2006) BMC Bioinformatics 7:483




Optimal dynamic experimental design

» To design optimal dynamic experiments __which maximize information content

* Measurements :
* What?
* When? (sampling times)
e Stimuli / controls:
* Which? How? (dynamic profile)

 Number and type of experiments (sequential, parallel)

» Mixed-integer dynamic optimization  (MIDO) problem formulation
 Cost function based on INFORMATION CRITERIA (Fisher , Akaike)

* Model calibration, selection and discrimination

Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010) BMC Systems Biology 4:11




Example: optimal dynamic experimental design in cel | signalling

System: NF-xB module in cell signalling

» Optimal experiements pulse-wise TNF stimuli

Experiment 1: Experiment 2: Experiment 3:
Sustained stimulation Pulse-wise stimulation Optimal pulse-wise experiment

TNF

Membrane

0
4000 8000 12000 0 4000 8000 4000 8000 12000
Time (s) Time (s) Time (s)

Experiment 1: Sustained stimulus
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Optimization in systems biology: examples of applic ations

/| Model building Inference

e Parametric identification e Reverse engineering
e Optimal experimental design e Inference of regulation
¢ Design principles

Optimization

Analysis Optimal control

e Flux Balance Analysis e Design/re-design of pathways
e MO-FBA e Optimal manipulation
e Dynamic analysis (dFBA)




Design principles, re-design

Optimality principles in biological systems

(objective function not always clear)

Use model-based optimization to:
» EXxplain design principles of a biosystem
» “Re-design” biological systems

» Synthesis




Example: Optimal “design” problem
(metabolic engineering)

Modification of existing regulatory and activity structure of the aromatic amino acid
biosynthesis pathway

The aim of the problem is to determine which of the regulatory loops (integer variables )
should be retained, and what should be the changes in the enzyme expression levels
(continuous variables ) to optimize a certain objective function

Hatzimanikatis, V., Floudas, C.A. and Bailey, J.E. (1996). AlIChe Journal, 42(5), 1277-1292.




Example: Optimal “design” problem

Design Problem (MO-MINLP)

Objective Functions

Maximization of Phe Selectivity subject
to physiological constraints

Other criteria  (usually imposed as ‘artificial’ constraints):

Simultaneous minimization of the deviation in metabolite concentrations
Simultaneous minimization of total enzyme activity

Optimization Method

New reformulation of the NBI method
Extension to handle MO-MINLP

Global Solver for MINLP problems: MITS (Exler, Alonso and Banga, 2007)

Sendin, J.O.H., O. Exler & J.R. Banga (2010) IET Systems Biology 4(3):236-248.




Example: Optimal “design” problem

Phe Selectivity (%)

O INBIMITS

O Weighted Sum Approach |

[ |
1.5 2 25
Deviation in Metabolite Concentrations

G6P + PEP ——

G6P + PEP ———

Different optimal strategies for
manipulation

No « artificial » constraints are needed

More accurate selection of final solution

— Reference
Il Strategy A
[ Strategy B
Hl Strategy C ||

Sendin, J.O.H., O. Exler & J.R. Banga (2010) IET Systems Biology 4(3):236-248.




Optimization in systems biology: examples of applic ations

/| Model building Inference

e Parametric identification e Reverse engineering
e Optimal experimental design e Inference of regulation
e Design principles

Optimization

Analysis Optimal control

e Flux Balance Analysis ¢ Design/re-design of pathways
e MO-FBA e Optimal manipulation

e Dynamic analysis (dFBA)

J




Dynamic optimization
(optimal control)

Optimal « intervention » strategies

Examples

Control of dynamical features (e.g. oscillations) of biosystems
Control of spatial structures (patterns)

Dynamic analysis (e.g. dFBA)

Computer aided design of biological units (synthetic biology)

Optimal drug scheduling




Example: phase resetting of calcium oscillator prob lem

System: intracellular calcium spiking in hepatocytes induced by an extracellular
increase in ATP concentration
(Lebiedz,D. et al. (2005) Phys. Rev. Lett., 95, 108303)

e To minimize the intracellular oscillations, driving the system to a given desired
state by the use of two inhibitors.
e Mixed-integer dynamic optimization (MIDO) problem formulation
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Intracellular Calcium
Channel Blocker

Hirmajer, T., E. Balsa-Canto and J. R. Banga (2009) BMC Bioinformatics 10:199.




Example: robust control of diffusion-reaction pheno mena

The FitzHugh-Nagumo (FHN) Model

Modelling neuron firing in the brain, the heartbeat, cellular organization activities, etc.

Or? i3 Oy

v v 9w
ot
Jw

— = g(w) — efv; g(w) = e(yw —9),
ot : & _

Vilas, C., M.R. Garcia, J.R. Banga, A.A. Alonso (2008) Physica D 237(18):2353-2364
Vilas, C., M. R. Garcia, J. R. Banga and A. A. Alonso (2006) Journal of Theoretical Biology 241 (2): 295-306
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Example: Multiplicity Conditions in Biochemical Reaction Networks

Reaction
\

Find min J(x) (k € R™, ¢ € R)

xeRM%*!
subject to : Helk,a) =0
p(k) €
cilk, o) > b= Lo ¥

Xs XS Xy (..\'g,.\‘u = R”k"')

R p3<p;-po/2

_/

Otero, I, J. R. Banga, A. A. Alonso (2009)
Biotechnology Progress 25(3):619-631




Beyond optimization

standard optimization sometimes insufficient (e.g. co-evolution of
biological systems)

while evolving towards optimal properties, the environment may
change or organisms may even change their own environment,
which in turn alters the optimum

in an evolutionary system, continuing development is needed so as
to maintain its fitness relative to the systems it is co-evolving with

Game-theoretic approaches may provide a better framework
studying the evolution of biochemical systems.




Red Queen effect

“...it takes all the running you can do, to keep in the same place.”

In an evolutionary system, continuing development is needed just in order
to maintain its fitness relative to the systems it is co-evolving with.

Van Valen L. (1973): "A New Evolutionary Law", Evolutionary Theory 1, p. 1-30.

Lewis Carroll. 1960 (reprinted). The Annotated Alice: Alice's Adventures in Wonderland and Through the Looking-Glass, illustrated by J.
Tenniel, with an Introduction and Notes by M. Gardner. The New American Library, New York, 345 pp




Conclusions




Conclusions

® Systems biology: dynamics, feedback, optimality

® Optimization in systems biology: smart simplification, but
need of global optimization in many cases

® Optimization: key element for model building, analysis,
inference, design and control

® Scaling-up: novel methods + HPC

® Beyond optimization: game-theoretic approaches
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