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Mike Mesarovic in “ System Theory and Biology” , 1968:

“The real advance in the application of systems theory “The real advance in the application of systems theory 
to biology will come about only when the biologists  
start asking questions which are based on the syste m-
theoretic concepts rather than using these concepts to 
represent in still another way the phenomena which are 
already explained in terms of biophysical or biochemical 
principles.

Then we will [...] have [...] a field of Systems Biology ”



Key Key issuesissues in SBin SB

Dynamics, Dynamics, feedbackfeedback, , optimalityoptimality



Optimization Optimization 



OptimizationOptimization

To To OPTIMIZEOPTIMIZE: “: “to make as perfect, effective, or functional to make as perfect, effective, or functional 
as possibleas possible” (Webster Dictionary)” (Webster Dictionary)

ModelModel--based Optimizationbased Optimization::
To find the To find the best solutionbest solution, from the set of all the possible , from the set of all the possible 
ones, in an ones, in an efficient and systematic wayefficient and systematic way, using model, using model--ones, in an ones, in an efficient and systematic wayefficient and systematic way, using model, using model--
based simulation to evaluate candidate solutionsbased simulation to evaluate candidate solutions

In general, it implies finding the In general, it implies finding the best compromisebest compromise among among 

several conflicting demandsseveral conflicting demands



Structure of an optimization problem

Find x

To Minimize (or Maximize)  f(x)

Decision variables

Objective function

Subject to

Constraints (requirements)



� Origins: classical theory of calculus

Fermat, Newton, Euler, Lagrange,...



Modern Optimization Tree

http://www-fp.mcs.anl.gov/otc/Guide/OptWeb/



OptimizationOptimization in in biologybiology

Living organisms have evolved to maximize theirLiving organisms have evolved to maximize their
chances for survival (Darwin)



“…in a context of increasing calls 
for biology to be predictive, 
optimization is the only approach 
biology has for making 
predictions from first principles.”

“…in a context of increasing calls 
for biology to be predictive, 
optimization is the only approach 
biology has for making 
predictions from first principles.”

Sutherland, W.J. (2005) The best solution. Nature 435:569



Optimization in Optimization in 
biochemical pathwaysbiochemical pathwaysbiochemical pathwaysbiochemical pathways





Models in Systems BiologyModels in Systems Biology

Stelling, J. (2004) Current Opinion in Microbiology, 7(5), 513-518. 



Examples of applications of optimization in systems  biology

Banga, J.R. (2008). Optimization in computational systems biology. BMC Systems Biology 2:47. 



�Linear Programming (LP)

�Non-linear Programming (NLP)

�Mixed-integer NLP (MINLP)
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�Mixed-integer NLP (MINLP)

�Dynamic Optimization (optimal control)

�Mixed Integer Dynamic Optimization
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Optimization in systems biology: types of applicati ons



Model building

•Parametric identification
•Optimal experimental design

Inference

•Reverse engineering
• Inference of regulation
•Design principles

Optimization

Optimization in systems biology: examples of applic ations

Analysis

•Flux Balance Analysis
•MO-FBA

Optimal control

•Design/re-design of pathways
•Optimal manipulation
•Dynamic analysis (dFBA)

Optimization
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Models in Systems BiologyModels in Systems Biology

Stelling, J. (2004). Mathematical models in microbial systems 
biology. Current Opinion in Microbiology, 7(5), 513-518. 



Convex OptimizationConvex Optimization

� Linear Programming (LP)

Find x to 

minimize f(x)=c*x

subject to Ax<=b

�where x are decision variables, 

�f is the objective function

�LP: linear f(x) & linear constraints



Flux Balance AnalysisFlux Balance Analysis

Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating 
the consequences of constraints, Nature Reviews Microbiology, 2:886-897(2004).



Flux Balance AnalysisFlux Balance Analysis

If we assume the organism is optimizing a 
certain objective function (e.g., maximizing
biomass), we get an optimal solution by
solving a

Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating 
the consequences of constraints, Nature Reviews Microbiology, 2:886-897(2004).

LINEAR PROGRAMMING (LP) problem

And we can do this for genome-scale models!



Price, N.D., Reed, J.L. and Palsson, B.O., Genome-scale models of microbial cells:evaluating the consequences of 
constraints, Nature Reviews Microbiology, 2:886-897(2004).





MultiMulti--Objective Flux Balance Analysis (MOFBA)Objective Flux Balance Analysis (MOFBA)

Motivation for MOFBA

� Flux Balance Analysis (FBA): determination of flux distribution by 
optimizing a single (usually linear) objective function (typically, growth or 
biomass yield).

� Other objectives (linear as well as non -linear ) are possible, often � Other objectives (linear as well as non -linear ) are possible, often 
conflicting each other, e.g. maximization of ATP, minimization of overall 
intracellular flux, etc.

� Main Idea: fluxes are distributed to optimize simultaneously two or 
more biological objective functions, i.e. Multi-Objective FBA

� Objective: to find a set of optimal trade-offs between different criteria 
(Pareto Optimal-Set )



MultiMulti--Objective Flux Balance Analysis (MOFBA)Objective Flux Balance Analysis (MOFBA)

The aim of MOFBA is to find the values of the fluxes v which maximize/minimize 
simultaneously a set of p objective functions subject to a number of equality and 
inequality constraints (mass-balance equations, bounds on fluxes, …). 

( ) ( ) ( ) T

1 2min/ max , ,..., pZ Z Z  v
v v v Zi = objective function i

S = stoichiometric matrix (m x n)
subject to:

L U

=
≤ ≤

Sv 0

v v v

S = stoichiometric matrix (m x n)
m = number of metabolites
n = number of reactions (fluxes)
vL, vU = lower and upper bounds

Additional constraints can be imposed to reflect biological knowledge and other physiological restrictions



MultiMulti--Objective Flux Balance Analysis (MOFBA)Objective Flux Balance Analysis (MOFBA)



Sendín, J.O.H., Alonso, A. A., & Banga, J. R. (2009). Multi-objective optimization of biological 
networks for prediction of intracellular fluxes. Advances in Soft Computing 49, pp. 197-205
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Models in Systems BiologyModels in Systems Biology

Stelling, J. (2004). Mathematical models in microbial systems 
biology. Current Opinion in Microbiology, 7(5), 513-518. 



NonNon--convex Optimizationconvex Optimization



Global 
optimization

methods

Deterministic

Branch & Bound

Relaxation

Homotopy

Intervals

Stochastic

Adaptive Random
Search

Evolutionary
computation

GAs

ES

methods
Stochastic

EPSimulated Annealing

Bio-inspired
metaheuristics

Hybrids

Clustering

Two-phase

Scatter Search

Tabu Search
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Model buildingModel building

Experiment
Data

Model

Solver

Fitted Model



Identifiability Analysis

Parameter 
Estimation

Optimal Experimental Design

Model buildingModel building

Experiment
Data

Model

Solver

Fitted ModelIdentifiability Analysis



Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010) BMC Systems Biology 4:11



Parameter estimationParameter estimation

Possible pitfalls and difficultiesPossible pitfalls and difficulties (Schittkowski, 2002)

� Convergence to a local solutions (with standard local 

methods)

� Narrow curved valleys

� Very flat objective function in the neighbourhood of a 

solutionsolution

� Over-determined models, leading to many solution 

vectors

� Bad starting values for parameters

� Badly scaled model functions

� Non-differentiable model functions



Local methods (L-M, G-N, etc.) may converge to local 
optima...

If one gets a bad fit, there is a Key Question:

ParameterParameter estimationestimation

If one gets a bad fit, there is a Key Question:

Is my model wrong, or has my solver failed?

� Need of Global Optimization methods



Moles, C. G.,  P. Mendes and J. R. Banga (2003) Genome Research, 13(11):2467-2474



New New metaheuristicsmetaheuristics

Rodriguez-Fernandez, M., J. A. Egea and J. R. Banga (2006) BMC Bioinformatics 7:483



• To design optimal dynamic experiments which maximize information content

• Measurements :
• What?
• When? (sampling times)

• Stimuli / controls: 
• Which? How? (dynamic profile)

• Number and type of experiments (sequential, parallel)

Optimal dynamic experimental design

• Mixed-integer dynamic optimization (MIDO) problem formulation

• Cost function based on INFORMATION CRITERIA (Fisher , Akaike)

• Model calibration, selection and discrimination

Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010) BMC Systems Biology 4:11



System: NF-κB module in cell signalling

• Optimal experiements pulse-wise TNF stimuli

Example: optimal dynamic experimental design in cel l signalling

Balsa-Canto, E., Alonso, A. A., & Banga, J. R. (2010) BMC Systems Biology 4:11
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Optimality principles in biological systems

(objective function not always clear)

Design principles, reDesign principles, re--designdesign

Use model-based optimization to:

� Explain design principles of a biosystem

� “Re-design” biological systems

� Synthesis



Modification of existing regulatory and activity structure of the aromatic amino acid 
biosynthesis pathway

Example:  Optimal “design” problem 
(metabolic engineering)

DAHP

ATP ADP
4 ATP

CHRG6P + PEP PHP PHE

PEP

G6P

4 ADP

4 ATP

TRP TYR

G6P

The aim of the problem is to determine which of the regulatory loops (integer variables ) 
should be retained, and what should be the changes in the enzyme expression levels 
(continuous variables ) to optimize a certain objective function

Hatzimanikatis, V., Floudas, C.A. and Bailey, J.E. (1996). AIChe Journal, 42(5), 1277-1292.



DAHP

ATP ADP

4 ADP

4 ATP

CHRG6P + PEP PHP PHE

TRP TYR

PEP

G6P

Design Problem (MO-MINLP)

Other criteria (usually imposed as ‘artificial’ constraints):

Maximization of Phe Selectivity subject 
to physiological constraints 

Objective Functions

Example:  Optimal “design” problem

� Simultaneous minimization of the deviation in metabolite concentrations
� Simultaneous minimization of total enzyme activity

Optimization Method

New reformulation of the NBI method
Extension to handle MO-MINLP
Global Solver for MINLP problems: MITS (Exler, Alonso and Banga, 2007)

Sendin, J.O.H., O. Exler & J.R. Banga (2010) IET Systems Biology 4(3):236-248.



� Different optimal strategies for 
manipulation
� No « artificial » constraints are needed 
� More accurate selection of final solution
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Weighted Sum Approach
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DAHP

ATP ADP
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4 ATP
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G6P

Example:  Optimal “design” problem

� More accurate selection of final solution
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Sendin, J.O.H., O. Exler & J.R. Banga (2010) IET Systems Biology 4(3):236-248.



Model building

•Parametric identification
•Optimal experimental design

Inference

•Reverse engineering
• Inference of regulation
•Design principles

Optimization

Optimization in systems biology: examples of applic ations

Analysis

•Flux Balance Analysis
•MO-FBA

Optimal control

•Design/re-design of pathways
•Optimal manipulation
•Dynamic analysis (dFBA)

Optimization



Optimal « intervention » strategies

Examples

Control of dynamical features (e.g. oscillations) of biosystems

DynamicDynamic optimizationoptimization
((optimaloptimal control)control)

Control of dynamical features (e.g. oscillations) of biosystems

Control of spatial structures (patterns)

Dynamic analysis (e.g. dFBA)

Computer aided design of biological units (synthetic biology)

Optimal drug scheduling



System: intracellular calcium spiking in hepatocytes induced by an extracellular 

increase in ATP concentration 

(Lebiedz,D. et al. (2005) Phys. Rev. Lett., 95, 108303)

• To minimize the intracellular oscillations, driving the system to a given desired 

state by the use of two inhibitors. 

• Mixed-integer dynamic optimization (MIDO) problem formulation

Example: phase resetting of calcium oscillator prob lem

Hirmajer, T., E. Balsa-Canto and J. R. Banga (2009) BMC Bioinformatics 10:199.



Example: robust control of diffusion-reaction pheno mena

Modelling neuron firing in the brain, the heartbeat, cellular organization activities, etc.

The FitzHugh-Nagumo (FHN) Model

Vilas, C., M.R. Garcia, J.R. Banga, A.A. Alonso (2008) Physica D 237(18):2353-2364

Vilas, C., M. R. Garcia, J. R. Banga and A. A. Alonso (2006) Journal of Theoretical Biology 241 (2): 295-306



Example:  Multiplicity Conditions in Biochemical Reaction Networks

Otero, I, J. R. Banga, A. A. Alonso (2009) 

Biotechnology Progress 25(3):619-631



Beyond optimizationBeyond optimization
�� standard standard optimization sometimes insufficientoptimization sometimes insufficient (e.g.  co(e.g.  co--evolution of evolution of 

biological systems)biological systems)

�� while evolving towards optimal properties, the environment may while evolving towards optimal properties, the environment may 
change or organisms may even change their own environment, change or organisms may even change their own environment, 
which in turn alters the optimumwhich in turn alters the optimum

�� in an evolutionary system, continuing development is needed so as in an evolutionary system, continuing development is needed so as 
to maintain its fitness relative to the systems it is coto maintain its fitness relative to the systems it is co--evolving withevolving with

�� GameGame--theoretic approachestheoretic approaches may provide a better framework may provide a better framework 
studying the evolution of biochemical systems. studying the evolution of biochemical systems. 



Red Queen effect

“…it takes all the running you can do, to keep in the  same place.”

Lewis Carroll. 1960 (reprinted). The Annotated Alice: Alice's Adventures in Wonderland and Through the Looking-Glass, illustrated by J. 
Tenniel, with an Introduction and Notes by M. Gardner. The New American Library, New York, 345 pp

In an evolutionary system, continuing development is needed just in order 
to maintain its fitness relative to the systems it is co-evolving with.

Van Valen L. (1973): "A New Evolutionary Law", Evolutionary Theory 1, p. 1-30. 



ConclusionsConclusions



�� Systems biology: dynamics, feedback, Systems biology: dynamics, feedback, optimalityoptimality

�� OOptimization iptimization in systems biology: n systems biology: smart simplification, smart simplification, but but 
need of need of global optimization global optimization in many casesin many cases

�� Optimization:Optimization: key element for model building, analysis, key element for model building, analysis, 

ConclusionsConclusions

�� Optimization:Optimization: key element for model building, analysis, key element for model building, analysis, 
inference, design and controlinference, design and control

�� ScalingScaling--upup: novel methods + HPC: novel methods + HPC

�� Beyond optimization: Beyond optimization: gamegame--theoretic approachestheoretic approaches
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