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Motivation

@ Understanding dynamics of cellular
processes
» Monitor the time-response to
perturbations
@ No experimental methods for applying
tightly controlled intracellular
time-varying perturbations
» Time varying perturbations more
informative than static ones
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o Goal: Experimental platform for the tight control of gene

expression at the single cell level
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A closed loop control platform
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@ Main features:

@ real-time observation
@ real-time change of cellular stimulus
© real-time control
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The control problem

o Input:
» osmolarity
@ Output:

» fluorescent measurements of
gene expression

@ Problem:

» what inputs to apply to
achieve a desired behaviour?
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The control problem

(] |nput: cell environment
» osmolarity
o Output:

» fluorescent measurements of CismOt‘C
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© Experimental results on controling signal transduction

@ Computational results on controling gene expression
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Methods

Which control algorithm?

@ Proportional-integral-derivative (PID) controller
define error e(t) as difference between desired and observed state
u(t) = ki-e(t) + ko - [} e(r)dT + ks - Ze(t)
requires no structural knowledge about the controlled system
but requires tuning of parameters

How to quantify Hogl nuclear localization?

@ Define colocalization with nuclear marker (Htb2)
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Experimental results: Sustained high activation

Normalized Hog1 nuclear localization
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@ Pl-control works in principle

@ Sustained high activation not possible due to cell adaptation
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Experimental results: Repeated trapezoidal motifs
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@ Frequency encoding seems to work better than amplitude encoding
(cells have time to relax)

@ Still room for improvement (e.g. time-lag, reproducibility)
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The control problem
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A model based control approach

o Mathematical model (similar to Mettetal et al., 2008 and Muzzey et al., 2009)

- if osme > osm; : (hyperosm. env.)
‘SInl ©- Hogl-FP1  Outpuil os_'m,- = Kohog — yo0sm;
hog = kg(osme — osm;) — ~ghog
rna = kmhog — Ymrna
p = Kprna — ypp
- if osme < osmi : (hypoosm. env.)
osm; = kohog — (Yo + v, )0sm;
hog = —Yghog
rna = kmhog — ymrna
Microscope p = Kprna — Ypp
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@ Parameters fitting

» signal transduction parameters fitted w.r.t our experimental data

transduction response to os-
motic shock of various dura-
tions or amplitude

> gene expression parameters set to arbitrary but realistic values
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Control strategy

@ Taking advantage of system structure: backstepping

Input Signal nuc Hogl
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cascaded,
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Control strategy

@ Taking advantage of system structure: backstepping
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@ Model predictive control approaches
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e Optimization-based implementation in Matlab/CMAES
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In silico evaluation of control strategy

@ Testing various control objectives with deterministic or stochastic

models (and ignoring observation and state estimation problems)
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In silico evaluation of control strategy

@ Testing various control objectives with deterministic or stochastic
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@ Proposed control strategy is feasible wrt real-time requirement and
fairly robust wrt large biological variability
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Discussion

@ Summary

> first closed loop control of a signal transduction pathway

» adaptation to osmotic stress suggests pulse modulated strategy

» proposed control approach seems computationally tractable and fairly
robust
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@ Future work to actually control gene expression

>
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deal with observation and state estimation issues

new strains to follow both signaling activity and gene expression
new strains (partly) lacking adaptation response (AGPD1, AGPD2)
improve model of the pathway and develop MPC controller
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Discussion

@ Summary

> first closed loop control of a signal transduction pathway
» adaptation to osmotic stress suggests pulse modulated strategy
» proposed control approach seems computationally tractable and fairly
robust
@ Future work to actually control gene expression
» deal with observation and state estimation issues
» new strains to follow both signaling activity and gene expression
» new strains (partly) lacking adaptation response (AGPD1, AGPD2)
» improve model of the pathway and develop MPC controller

@ From "l understand what | can build” to "| understand what | can
control”
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Thank you for your attention
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