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Preamble

• Fact: Experimental techniques for quantitative monitoring of gene 
expression over time enable dynamic modelling

• Goal: Automated procedure for inferring structure and parameters of 
gene regulatory network models from experimental data

• What models from what data ? And for what purpose ?
• Kinetic models ? Linear models ? Power laws ? Interaction networks ? 
• Analysis ? Control ? Re-engineering ?

► Define relevant class of models well suited for identification
► Preserve information on gene activation logics

• Structure and parameter estimation are interrelated
• Parameter estimation is challenging in models of realistic size, cannot do it 

for every possible model structure
► Exploit a priori information on the model structure 
► Problem decoupling: eliminate hypotheses without fitting parameters 
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Outline

• Boolean-like gene regulatory network models
• Models with unate structure
• Identification of ODE models with unate structure

● From protein concentration and synthesis rate profiles in cell colonies
● Focus on an interesting subclass of unate models
● Performance assessment on a test case

• Results on IRMA (yeast synthetic network, Cantone et al, Cell 2009)
• Conclusions

• With Riccardo Porreca (ETH), John Lygeros (ETH), Giancarlo 
Ferrari-Trecate (UniPv)  (Porreca et al, Bioinformatics 2010)
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Boolean models
• N Boolean variables representing n genes

• Boolean regulation function

• Dynamic Boolean networks (discrete time):
 

• Can associate regulatory interaction graph 
● n nodes (genes), arcs (incoming arcs of node i = effective inputs of bi)

1

2

n

...
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Boolean-like ODE models

● Recall Boolean update map:

 

● Algebraic equivalent (Plahte et al, J Math Biol 1998): apply the 
transformation

● Boolean-like model: define ODE
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Plausibility ?

Gene Expressed when Boolean model Boolean-like model
1 G2 not expressed
2 G1 expressed or G4 not expressed
3 G4 expressed and G1 not expressed
4 G2 expressed

• Experimental evidence that often 
• Relationships among transcription factor concentrations and transcription 

rates, as well as post-transcriptional, transport, (and reaction) processes at 
equilibrium, can be described by sigmoidal functions

• Starting point for biologically relevant and structured quantitative models

• Nonlinear regulatory effects 
associated to multiple regulators 
combine into algebraic expressions 
(sums and products)
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Tractability ? 

• General Boolean-like model:

• Structure identification: based on data, decide
● The number of summands
● The sigmoids in each product and their sign

• Parameter identification: paramaters of each sigmoid, rates 

• Intractable problem: cannot enumerate and fit all model structures!
● Combinatorial explosion of model alternatives
● Heavy nonlinear parameter estimation, identifiability issues

• But, good starting point
● Reduction to specific families of Boolean-like functions
● Use for approximation of more general nonlinear models
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Boolean-like models with unate structure

• Unate functions: Boolean rules monotone in each input variable
• Transcription factors with unambiguous role (activator XOR repressor)
• Arguably, the only distinguishable rules (Grefenstette et al, Biosystems 2006)
• Includes most known gene activation rules (Nikolajewa et al, Biosystems 2007)

• Boolean-like formulation: preserves monotonicity properties
• Model:

• Sign pattern:
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Identification of unate-like models

• Two-step strategy: eliminate bad hypotheses before fitting parameters
• Given: protein concentrations & synthesis rates 
• Step 1: Exploit monotonicity properties  to invalidate sign patterns  
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Complexity

1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 -1 4
1 1 -1 0 1 -1 -1 0 3

Pattern 1 0 -1 0 2
1 0 0 0 0 0 -1 0 1

0 0 0 0 0

Superpatterns

Subpatterns

Sign patterns: definitions and properties

• Given data pairs: 
• Definition: p is inconsistent if the property

 
 is falsified for some k,l

• Definition: subpattern and superpattern

• Subpatterns of inconsistent  patterns are also inconsistent
• Superpatterns of consistent patterns are also consistent
• Minimal consistent and maximal inconsistent patterns exist
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Identification of unate-like models cont'd

• Step 2: Search best fitting model structure 
with valid sign pattern

• Define model structures S(p) of interest
• Enumerate model structures with valid sign 

patterns of increasing levels of complexity
• Stop at the level of complexity where at least 

one model fits the data “well enough”
 Hierarchical search favors simpler models

c=1, P=empty set

Generate all valid 
patterns p

of complexity c

For every structure s 
in S(p), fit the model
gi(x|s,θ) to the data

Include in P each model
gi(x|s,θ) with fitting error

small enough 

P empty?

Return P

c=c+1

yes

no

c=max ?

yes

no
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Comments

• Separate identification of regulation function of each gene
• Based on nonconvex regression with noisy data:

• Weights normalize for the variance of measurement errors
• Standard statistical tests for data ordering

• What is a statistically good model? 
• Under the null hypothesis that the estimated model is correct, the fitting 

residual is approximately distributed as 
• We accept a model structure with confidence level α if  

• Key question: how to define the model structures of interest ?
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Some interesting model classes

• Goal: use a priori knowledge to reduce the family of network structures
• Intuition: many Boolean expression rules are unlikely/uncommon
• Evidence: (Szallasi et al, Proc Pac Symp Bioc 98, Kauffman et al, PNAS 04, ... )

out of 139 gene activation rules analyzed, 99% are “Canalizing Functions”, 
95% are “Hierarchically Canalizing Functions”, 
90% are “H0  H∪ 1”
● CFs: at least one (canalizing) 
     value of at least one (canalizing) 
     variable determines the value 
     of the function
● HCFs: when the canalizing 
     variable takes its non-canalizing 
     value, a second variable is 
     canalizing, etc. We focus on H0 U H1

Boolean rules

CF UnateH0  H∪ 1HCF
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Identification of models in S = H0 U H1

• Models in S: Only “and” (H0) or at most one “or” (H1) 

• Given concentration and synthesis rates
• Additive or multiplicative noise with known variance

• Estimate

• Structure:

• Rates and sigmoid parameters:
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Test on a repressilator-based system
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Performance results

Index Range Description

Step 1 [0,1] Probability that the true p is deemed consistent
[0,1] Percentage of sign patterns eliminated from the search in Step 2

Step 2 [0,1] Probability that the true structure is In the pool of identified models
≥1 Average number of models in the pool

R eliability
S electivity
A ccuracy
D ispersion

(Porreca et al, Bioinformatics 2010)
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Experiment on IRMA
• Synthetic gene network engineered in 

Yeast (Cantone et al., Cell 2009)
• 5 genes with fluorescent reporters 
• “Switch on” from glucose to galactose
• “Switch off” from galactose to glucose

(Cantone et al., Cell 2009)
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Mathematical model

• We attempt identification in the class of models with S-structure
• Different but similar analytical form
• Test for flexibility of the approach
• Known delays can be accounted for

(Cantone et al., Cell 2009)
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Results
• Comparison with TSNI (di Bernardo et al.)
• A few protein concentration datapoints
• Rates simulated from the model:
 ``What-if'' study, extensions possible

• PPV=TD/TD+FD and Se=TD/TD+FU
 (T=True, D=Detected, U=Undetected edges)

(Porreca et al, Bioinformatics 2010)
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Conclusions

• Algorithmic procedure for learning gene network dynamics from data

• Generalizes to any model class with monotonicity properties
• Recent work by Belta and Julius along these lines

• Applicable to existing data, provided suitable preprocessing

• E.g.

(Ronen et al, PNAS 2002, Brown et al, Biotechnol J 2008,...) 
• Recently: synthesis rates and variances from concentration profiles, via 

bootstrapping or deconvolution methods (Porreca et al., CDC 2010) 

• More properties of S- and unate-structure models to exploit
• Quasi-convexity (To be presented at IFAC 2011. Submitted to J Robust 

Nonlin Contr, Special issue on System Identification of Biological Systems) 

• Application to real E.coli carbon starvation response data
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... Thank you!

                                   eugenio.cinquemani@inria.fr
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