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Preamble

» Fact: Experimental techniques for quantitative monitoring of gene
expression over time enable dynamic modelling

« Goal: Automated procedure for inferring structure and parameters of
gene regulatory network models from experimental data

« What models from what data ? And for what purpose ?
Kinetic models ? Linear models ? Power laws ? Interaction networks ?
Analysis ? Control ? Re-engineering ?

» Define relevant class of models well suited for identification
» Preserve information on gene activation logics

 Structure and parameter estimation are interrelated

Parameter estimation is challenging in models of realistic size, cannot do it
for every possible model structure

» Exploit a priori information on the model structure
» Problem decoupling: eliminate hypotheses without fitting parameters
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Outline

* Boolean-like gene regulatory network models
* Models with unate structure

* Identification of ODE models with unate structure
* From protein concentration and synthesis rate profiles in cell colonies
* Focus on an interesting subclass of unate models
* Performance assessment on a test case

* Results on IRMA (yeast synthetic network, Cantone et al, Cell 2009)
» Conclusions

 With Riccardo Porreca (ETH), John Lygeros (ETH), Giancarlo
Ferrari-Trecate (UniPv) (Porreca et al, Bioinformatics 2010)

centre de recherche

GRENOBLE - RHONE-ALPES




Boolean models

* N Boolean variables representing n genes

(X1, X>...,X,) €{0,1}" /@\

X; =0 gene not expressed

— T
X; =1 gene expressed @ @
» Boolean regulation function \ @/

X;i expressed iff b;(X) =1
* Dynamic Boolean networks (discrete time):
Xi(t+1) = bj(X(t)) i=1,....n t=20,1,2,...

« Can associate regulatory interaction graph
* n nodes (genes), arcs (incoming arcs of node i = effective inputs of bi)
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Boolean-like ODE models

* Recall Boolean update map:
X" = bi(X), where b=/ A; X[, Xf; € (X, X}

 Algebraic equivalent (Plahte et al, J Math Biol 1998): apply the

transformation .\ .
. . .
Xj — o7 (x) ot (x) = 52—
X+

- expr(X) — 1 — expr(x)
expr(X) A expr'(X) — expr(x) - expr'(x)

o™ () =107 (x)

» Boolean-like model: define ODE

X = ki + K7 bi(x) — ¥ix;

bi(x) algebraic equivalent of b;(X)
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Plausibility ?

» Experimental evidence that often

Relationships among transcription factor concentrations and transcription
rates, as well as post-transcriptional, transport, (and reaction) processes at
equilibrium, can be described by sigmoidal functions

Nonlinear regulatory effects 1|
associated to multiple regulators | —
combine into algebraic expressions Pl Genel
(sums and products) R J, l
/—> —> I—b
P2aP2b Gene 2 P4 Gene 4 P3 Gene3
Gene Expressed when Boolean model Boolean-like model
1 G2 not expressed bi(X) = =X, bi(x) = 0~ (x2)
2 G1 expressed or G4 not expressed  p,(X) = X, VX, b(x)=1—0"(x1) 07 (xs)
3 G4 expressed and G1 not expressed b, (X) = X, A X by(x) = o7 (xa) - 0~ (x1)
4 G2 expressed by(X) = X, ba(x) = 0™ (x2)

« Starting point for biologically relevant and structured quantitative models
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Tractability ?

 General Boolean-like model:
X; = .‘i} + m?b;(x] — X, where b; = ZHG’ x;|0 ;)

« Structure identification: based on data, deC|de
e The number of summands
* The sigmoids in each product and their sign

« Parameter identification: paramaters of each sigmoid, rates

* Intractable problem: cannot enumerate and fit all model structures!
e Combinatorial explosion of model alternatives
* Heavy nonlinear parameter estimation, identifiability issues

 But, good starting point
* Reduction to specific families of Boolean-like functions
« Use for approximation of more general nonlinear models
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Boolean-like models with unate structure

« Unate functions: Boolean rules monotone in each input variable

Transcription factors with unambiguous role (activator XOR repressor)
Arguably, the only distinguishable rules (Grefenstette et al, Biosystems 2006)

Includes most known gene activation rules (Nikolajewa et al, Biosystems 2007)
» Boolean-like formulation: preserves monotonicity properties

. ni +(o.
Model bi(x) = HT;, T = I—H (l—cr:t(xJ-)) where cr:t(xj-) = {G_(XJ)’ or
I=1 J€J o~ (%),
Sign pattern:
1, if o (x) = ot (x),
p:(Pla---Pn)a pj:!l ifcri(xj):cr—(xj)? J=dyususn
lO if j& J; VI

Example, p= (—1,1): 0 (x1)o"(x), 1 — o (x1)0 " (x2), 0~ (x1)o" (x2) + %o""(xz),

bi(x) is nondecreasing (resp. nonincreasing) in x; if pj =1 (resp. p; = —1)

.. and so is any synthesis rate gi(x) = ki + x?b;(x), provided xi, k7 > 0
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|dentification of unate-like models

« Two-step strategy: eliminate bad hypotheses before fitting parameters

« Given: protein concentrations & synthesis rates ( recall 5; = gi(x) — 7i(x) )
« Step 1: Exploit monotonicity properties to invalidate sign patterns

Example: Consider g(x|p), x = (x1,x2).

Let p = (p1, p2) be unknown.

Given data (x, g;), (x’. g/), assume
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Can exclude:
p=(~1.1) = (sign(x{ — x1),sign(x — x2)
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and also
P = (G 1)? p = (_10) p = (UO)

independently of parameter values!
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Sign patterns: definitions and properties

- Given data pairs: (x',g"),...,(x™,g™), with g“ = g(x“|p)
* Definition: p is inconsistent if the property
pi(xf —x)>0, j=1,....n = g(x*|p) — g(x'|p) > 0

is falsified for some k||
* Definition: subpattern and superpattern

Complexity
Superpatterns T1-11 11-1-1 1-1-11 1-1-1 -1 4
PEP 11-10 1-1-10 3
Pattern 10-10 .
1000 00-10 1
Subpatterns 05000 O

» Subpatterns of inconsistent patterns are also inconsistent
« Superpatterns of consistent patterns are also consistent
« Minimal consistent and maximal inconsistent patterns exist
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|dentification of unate-like models cont'd

« Step 2: Search best fitting model structure
with valid sign pattern
Define model structures S(p) of interest

Enumerate model structures with valid sign
patterns of increasing levels of complexity

Stop at the level of complexity where at least
one model fits the data “well enough”

Hierarchical search favors simpler models

Example with products of sigmoids only:

(10 —10)
oy o3
(11 —10) (1—-1—=10) (10 —11) (10 —1—1)
+ - = + = = + = - + - -
51-5'20'3 Jl-f}"z 0'3 I’_Tlﬂ'3 I.’.Tq_ 0'10'3 -5"4

c=1, P=empty set

v

Generate all valid

— patterns p
of complexity ¢

For every structure s
in S(p), fit the model
gi(x]s,0) to the data

;

Include in P each model
gi(x|s,0) with fitting error
small enough
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Comments

» Separate identification of regulation function of each gene
* Based on nonconvex regression with noisy data:

c‘i_r'ngw.#;c — gi(x¥|s,6 ))2

Weights normalize for the variance of measurement errors
Standard statistical tests for data ordering

« What is a statistically good model?

Under the null hypothesis that the estimated model is correct, the fitting
residual is approximately distributed as x?(m)

We accept a model structure with confidence level a if

0 < 7(a), 7(a) computed from x?%(m)

« Key question: how to define the model structures of interest ?
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Some interesting model classes

» Goal: use a priori knowledge to reduce the family of network structures
* Intuition: many Boolean expression rules are unlikely/uncommon

» Evidence: (Szallasi et al, Proc Pac Symp Bioc 98, Kauffman et al, PNAS 04, ...)
out of 139 gene activation rules analyzed, 99% are “Canalizing Functions”,
95% are “Hierarchically Canalizing Functions”,
90% are “Ho U H1"
 CFs: at least one (canalizing)
value of at least one (canalizing)
variable determines the value
of the function

« HCFs: when the canalizing
variable takes its non-canalizing

value, a second variable is
canalizing, etc. [ We focus on Ho U H1 ]

Boolean rules
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|dentification of models in S = Ho U H+

* Models in S: Only “and” (Ho) or at most one “or” (H1)

X; = H',} + ﬁ:?b;(x) — YiX; where

gi(xh) ' U:t(sz} o gi(}{"f)
P00 = {CT :I:(ij} T Ji(“ﬁf—z)(l — 0T (X1 )oT (5 ))

 Given concentration and synthesis rates
Additive or multiplicative noise with known variance

e Estimate

Structure: €, (j1,J2,---,J¢), Ho vs. Hi

Rates and sigmoid parameters: H?}? ‘H:;'za 0; (possibly depending on i)
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Test on a repressilator-based system

— L1 | 1)
i —— i ——
gene 6 gene 3 gene 5
| 1
i —— T
gene 1 gene 2
1+
N ——

gene 4
X1 =kKp,1+K1,10 (X3)—y1X1,
X7 =Kp,2 K] __QU_[.I] )—¥ax7.
X3 =K, 3+K| __3(!'_[.1?2}— Y3x3,
Xy =kq4+K1 40 (X))o (x3) —yyxg.
s =ko,5+K1.5[1 =0 (x2)0 ™ (x3)]—y5x5,
6 =k0,6+k1.6[1 —o ™ (x2)o T (x3)]o™ (x1) — yexe.
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Perfo rmance resu Its gece 001 003 005 007

. . . . : Step 1

We attempted identification of this system with 90 equally  Gepe 1 0.92 0.02 0.92 091

‘ e e e , ) 090 092 091 0809
spaced data points over a time interval such that the product Step 2 | 1 I :
concentrations of the core genes complete three full oscillations. | | | |
Measurements i and g}‘* were artificially corrupted by Gaussian Step 1 0.02 0.92 0.92 0.01

- N - - Gene 2 093 092 089 089
noise samples according to the observation model (7), with 1-'€f.r{-kJ = Step 2 : e : :

{-:re.rf]lz and 1-'6{3;*?}:{(;&-5;{?}3._ for the different noise levels oe =

oe =0.01,0.03,0.05,0.07. This corresponds to noise roughly within Step 1
3%, 10%, 15% and 20% of the actual values of rf and gf The Gene 3
performance of Algorithm 1 (with N=6 and «=0.95) for the

various noise levels and all genes is conveyed by the scores on the Step 1
performance indices R, S, A and D (Table 1). These were computed Gene 4

0.92 0.92 0.92 0.92

Step 2 0.93 0.93 0.93 0.02

0.94 0.92 0.87 0.65
0.94 0.94 0.93 0.89

Trux Db UL Dhtim O Ok

as described in Section 2.3.4 on the basis of M = 100 identification Step 2 I 1 1.02 1.44
runs with the same system evolution, but with different random S | 1 1 1
. tep |
outcomes of the noise. Each run (MaTLAE V.7 R.14) took on an  Gepe s 094 074 053 0.48
. e ) . . . 0.95 0.94 0.91 0.83
average roughly 5 min on a Windows XP workstation with Pentium Step 2 | : 1.79 4
3.20 GHz processor and 2.00 GB RAM. Computational time ranged | | | |
from ~2 s for the identification of g3 to ~4 min for the identification Gone 6 Step 1 0.79 0.65 0.57 0.43
of gg. Step 1 always performs very reliably, i.e. index R is constantly e Siep 2 0.89 0.92 0.85 0.42
P | L2 276 274
(Porreca et al, Bioinformatics 2010)
Index Range  Description
Step 1 R eliability [0,1] Probability that the true p is deemed consistent
P S electivity [0,1] Percentage of sign patterns eliminated from the search in Step 2
A ccuracy [0,1] Probability that the true structure is In the pool of identified models
Step 2 ) : :
D ispersion 21 Average number of models in the pool
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Experiment on IRMA

Switch-on time series Switch-off time series
CBF1 & CBF1
- Synthetic gene network engineered in .., o H
Yeast (Cantone et al., Cell 2009) - o AR vo-o

5 genes with fluorescent reporters

“Switch on” from glucose to galactose

“Switch off” from galactose to glucose

(T 1\

[HO[cEEd --o.-u METIE GAT:!I-*.- SALTD |55 --‘.
-
o
B

.1. o 2 [GALBE ASHT ——

\ Ashie - Ismﬁ_h—/
I
Galaciose Transcriptional [ Promoter
ragulation [ |Gene
__________ Protein-prolein Tag
regulation
(Cantone et al, Ce” 2009) 0. A0 B0 120 160 200 240 280 4 0 20 4 60 S0 100 130 140 160 180 200

[min] [min]
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Mathematical model

Letting [CBF1] = x1; [GAL4] = xo; [SWI5] = x3; [GAL8SO] = z4; [ASH1] =
the evolution of the mRNAs concentrations were modelled as follows:

dr 2B (t —7)
Tt] = a1+ : : : — dix1, (1)
;Lh-l +.‘]" {t—T” (1+£ﬁ§)
X
dza :r:i!"1 . Zrom :
7 = Gt (kf{'ﬂ 3 T{t%) — (do — A(By))xa, (2)
dx _ T
% = ogtuvg|— ™ Q — daxs, (3)
. T .T [J. + J
dzy .Tg* . ki
_ = X 14 = ot {,i, - ﬂ -'.i T4, 4
> {E'I+?'I(k§5+xf§‘"’) (dy (Ba))za, (4)
- e 6 s ’
o st Rhe 1 ofe | O (5) (Cantone et al., Cell 2009)

« We attempt identification in the class of models with S-structure
Different but similar analytical form
Test for flexibility of the approach
Known delays can be accounted for
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Table 2. Average performance (standard errors in parentheses) on the IRMA
datasets for different noise levels

Results

Switch-on data Switch-off data

* Comparison with TSNI (di Bernardo et al.)

. . . o, PPV Se PPV Se

A few protein concentration datapoints
. 0.07 0.98 (0.07) 0.53 (0.08) 0.91 (0.12) 0.58 (0.07)
» Rates simulated from the model: | [0.98 (0.07)]  [0.53(0.08)]  [0.88(0.13)]  [0.56(0.08)]
- e . . 0.1 0.95 (0.10) (.46 (0.08) 0.85(0.14) 0.51 (0.09)
What-if" study, extensions possible (0.04(0.1D)]  [046 (0.08)]  [0.80(0.14)]  [0.48 (0.00)]
0.67 (0.23) 0.29 (0.10) 0.58 (0.25) 0.25 (0.11)
« PPV=TD/TD+FD and Se=TD/TD+FU 03 064024  [027(010)]  [052(025)]  [022(0.11)]

(T=True, D=Detected, U=Undetected edges)

Indices PPV and Se are reported for both the signed (in square brackets) and unsigned
(without square brackets) directed graph.

switch off data
FPV=1; 5e=0.63,0.63.0.25

{a) (b} switch on dala switch off data (C} switch on data

PPV=0.80[0.60]: Se=0.50[0.38] PPV=0.60[0.20]; Se=0.38[0.13] PPV=1; Se=(1.63,0.38,0.38

? we] © @

()

Fig. 1. (a) True network of interactions in IRMA. Results obtained by (b) the TSNI algorithm (Cantone ef al., 2009) and by (¢) Algorithm 1. Grey arcs
(respectively, grey-end markers) denote incorrect direction (respectively, sign) of the inferred interactions. Values of PPV and Se for the signed directed graph,
when different from the unsigned case, appear in square brackets. The three values of Se in (c¢) refer to increasing noise levels, while dashed and dotted arcs
denote interactions inferred only for o, < 0.3 and o, < 0.1, respectively.

Algorithm 1

(Porreca et al, Bioinformatics 2010)
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Conclusions

» Algorithmic procedure for learning gene network dynamics from data

» Generalizes to any model class with monotonicity properties
Recent work by Belta and Julius along these lines

» Applicable to existing data, provided suitable preprocessing
E.g. gi(x) = rj +ribi(x) = X + 7ixi

(Ronen et al, PNAS 2002, Brown et al, Biotechnol J 2008,...)

Recently: synthesis rates and variances from concentration profiles, via
bootstrapping or deconvolution methods (Porreca et al., CDC 2010)

* More properties of S- and unate-structure models to exploit

Quasi-convexity (To be presented at IFAC 2011. Submitted to J Robust
Nonlin Contr, Special issue on System Identification of Biological Systems)

 Application to real E.coli carbon starvation response data
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... T'hank you!

eugenio.cinquemani@inria.fr
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