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Computer Scientists in the Wild

Formal methods essence is pure computer science: writing programs
verifying programs

Yet sometimes messing with control engineering, embedded systems,
(analog) circuits design

Messing with biologists is more recent and even more scary... How did we
end up there ?

Common problematics: complex systems design and analysis from small
elements obeying simple, robust and well known rules

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 2 / 45
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Formal Verification

A domain taking its roots in early computer science theory (language and
automata theory), discrete mathematics, logics, even philosophy

Its goal: to prove correctness

Growing in applicability steadily since the early 80s and the advent of
Model Checking (Turing award of Edmund Clarke and Joseph Sifakis in
2008)

Its popularity “benefited” from spectacular failure of simple testing and
bug finding in the 90s (Pentium bug, Ariane 5 self-destruction due to a
software bug)

Nowadays an industry standard in digital circuits design

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 3 / 45
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What does it mean to prove correctness ?

Correctness is a subjective notion until it is defined formally.
Thus we need:

I a description of the systems behaviors
I a specification language to describe desired (good) and unwanted

(bad) properties

Coffee machine example
I a good property is: if I insert a coin and push ’coffee’, I get coffee
I a bad one: I get a tea (and no change)

The system is declared correct iff

all the behaviors of the system satisfies all the good properties and none of
the bad ones

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 4 / 45
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From Verification to Synthesis

Verification of mis-conceived systems can be tedious and frustrating.
Rather than chasing bugs, can’t we prevent them from happening in the
first place ?

Synthesis is the ultimate goal of Formal Verification:

Building correct-by-construction systems directly from specifications

For synthesized systems, verification is unnecessary (or by nature,
redundant).
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Synthesis in the Wild

Synthesis is a difficult problem: decades of research, actually applied for
hardly a couple of years to produce small digital circuits

Attempts to apply synthesis in even more challenging context: software,
analog circuits , control engineering, biology, etc

Is this reasonnable/useful ?

In most cases, no. A common syndrome:

When you have a hammer, everything looks like a nail

Still, genuine belief that diffusing formal methods to other, more barbaric
scientific domains, if done in an humble and intelligent way, can still do
some good

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 6 / 45
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Reductionism and Systems Biology

As far as my understanding goes, biologists have two alternating
paradigms: reductionism and systems biology

Reductionism mood: break every-living-thing apart and list the
components

Implicit postulate of reductionism: exhaustive listing will imply perfect
understanding of the living thing

Systems biology is concerned with the tentative realisation of the
postulate, i.e., reconstructing a system from its core elements

Illustration: the achievement of DNA sequencing and the challenge of
relating genotypes to phenotypes
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How Formal Methods can help Systems Biology

Life is robustly correct thanks to the bug chasing virtues of evolution...

To be useful (quantitative, predictive), a reconstructed mechanistic model
of a biological system has to robustly satisfy a number of properties

Formal methods can help
1. to specify precisely these properties
2. to verify automatically that the model satisfy them
3. to constrain further the model to enforce their robust satisfaction
4. in multiscale modelling, to validate the different layers of abstraction

(Example: going from complete models of single cells to models of
tissue (ongoing Syne2Arti project))

Let us be more specific on the models and properties that we consider.
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Outline

1 Introduction

2 Formal Methods for Continuous Models
Reachability Analysis
Quantitative Temporal Logics

3 Illustration with an Enzymatic Reaction Network

4 Summary
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Models and First Example
We focus on parametrized ordinary differential equations (ODEs) of the form
ẋ = f (x, p)

Example the acute inflamatory response to a pathogen infection

dP
dt = kpgP

(
1− P

p∞
)
− kpmsmP
µm + kmpP − kpmf (NA)P,

dNA

dt = snrR
µnr + R − µnNA,

dD
dt = kdnfs(f (NA))− µdD,

dCA

dt = sc + kcnf (NA + kcmdD)
1 + f (NA + kcmdD) − µcCA,

Three possible outcomes :
I Health: pathogen and damage are driven to a low steady state
I Aseptic death: pathogen is eliminated but not tissue damage
I Septic death: tissue damage and pathogen remain high

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 10 / 45
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ẋ = f (x, p)

Example the acute inflamatory response to a pathogen infection

dP
dt = kpgP

(
1− P

p∞
)
− kpmsmP
µm + kmpP − kpmf (NA)P,

dNA

dt = snrR
µnr + R − µnNA,

dD
dt = kdnfs(f (NA))− µdD,

dCA

dt = sc + kcnf (NA + kcmdD)
1 + f (NA + kcmdD) − µcCA,

Three possible outcomes :
I Health: pathogen and damage are driven to a low steady state
I Aseptic death: pathogen is eliminated but not tissue damage
I Septic death: tissue damage and pathogen remain high

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 10 / 45



40 60 80 100 120

40

60

80

mm

Evolution w.r.t. time

Goal identify ranges for initial conditions (e.g. initial concentrations) and
parameters (e.g., kinetic constants) in the model that lead to predictable
outcomes
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Health outcome

Goal identify ranges for initial conditions (e.g. initial concentrations) and
parameters (e.g., kinetic constants) in the model that lead to predictable
outcomes
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Aseptic death outcome

Goal identify ranges for initial conditions (e.g. initial concentrations) and
parameters (e.g., kinetic constants) in the model that lead to predictable
outcomes
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Septic death outcome

Goal identify ranges for initial conditions (e.g. initial concentrations) and
parameters (e.g., kinetic constants) in the model that lead to predictable
outcomes
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Septic death outcome

Goal identify ranges for initial conditions (e.g. initial concentrations) and
parameters (e.g., kinetic constants) in the model that lead to predictable
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Safety Verification through Reachability Analysis
Define a set P of parameters p (init. cond. or param), each corresponding to one
traj. and some forbidden region B. How to verify that all traj. avoid B ?

Reachability analysis
I Trying to compute the set

containing all trajectories
I Using simple set representation
I Empty intersection with B proves

safety

Difficulties
I Spurious results in case of imprecise over-approximation + difficult for

nonlinear system with more than a few continuous variables
I We developped a method based on simulation and sensitivity analysis : good

compromise between scalability and precision

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 12 / 45
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Parameter Synthesis by Refinement

I Trying to find regions for which the system is safe

I Using local reachability analysis, we can certify sub-regions
I Iteratively repeating the process we can find precise boundaries

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 13 / 45
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Parameter Synthesis by Refinement

I Trying to find regions for which the system is safe
I Using local reachability analysis, we can certify sub-regions

I Iteratively repeating the process we can find precise boundaries

? ? ?
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Application to Acute Inflammation

Each point corresponds to a trajectory representative of its neighborhood.
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Outline

1 Introduction

2 Formal Methods for Continuous Models
Reachability Analysis
Quantitative Temporal Logics

3 Illustration with an Enzymatic Reaction Network

4 Summary
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Motivations

The technique presented so far deals with safety properties

Theory shows that every temporal property on a bounded timed horizon
can be expressed as a safety property

Since life has a bounded time horizon, this should be enough...

However, translating a property of interest into a safety property is not
always trivial nor intuitive, and error prone

In the spirit of synthesis, the specifications of inputs should be as close as
possible as plain natural language

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 16 / 45
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Reactive Systems and Temporal Logics

A key issue is the appropriate choice of language to describe properties:
I Enough expressivity
I Ease of writing specification

Temporal logics popularized in 1978 by Amir Pnueli when programs shifted
from simple input-output relations to reactive programs.

A typical reactive program is an operating system:
I a good property is always when the mouse is moved, the cursors

moves
I a bad one: always eventually a blue screen appears and nothing

happens
In our jargon, a good property such as the one above is a liveness
property. Also, a metabolism is a reactive program...

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 17 / 45
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Temporal Logics in a Nutshell

Temporal logics allow to specify patterns that timed behaviors of systems may or
may not satisfy. They come in many flavors

The most intuitive is the Linear Temporal Logic (LTL), defined over discrete
sequences of states

It is based on logic operators (¬, ∧, ∨) and temporal operators : “next”,
“always” (alw), “eventually” (ev) and “until” (U)
Examples:

I ϕ ϕ ϕ ϕ · · · satisfies alw ϕ

I ψ ψ ψ ϕ ψ · · · satisfies ev ϕ
I ϕ ϕ ϕ ϕ ψ · · · satisfies ϕ U ψ

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 18 / 45
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From discrete to continuous

Temporal logics mostly developped for discrete systems, a natural way to
go is to discretize time and space

However this means that formulas applies to an abstraction of the system,
thus introducing a distance between specification and the “real” system

We prefer to adapt temporal logics to continuous time and space :
I Spatial constraints are specified on the real-valued quantities
I Temporal constraints involve dense-time intervals rather than e.g.

fixed time steps

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 19 / 45
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Temporal logic formulas: atomic predicates

A predicate is a general inequality constraints on the variables (say A, B, C etc)
and parameters at time τ

% distance to (A0,B0) is more than 1.
sqrt((A[tau]-A0)^2 + (B[tau]-B0)^2) > 1.

% the system reached quasi stationnary steady state
abs(ddt{A}[tau])+abs(ddt{A}[tau])) < 1e-10

% A is sensitive to parameter p
abs(d{A}{p}[tau]) > 10*A[tau]/p

The canonical form of a predicate µ is:

µ ≡ µ(ξp, τ) ≥ 0

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 20 / 45
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Temporal logic operators

Metric Interval Temporal Logic (MITL) syntax:

ϕ := µ | ¬ϕ | ϕ ∧ ϕ | ϕ U[a,b) ϕ|ev[a,b) ϕ|alw[a,b) ϕ

% The concentration of A becomes more than 1e-6 within 2 s
ev_[0,2] (A[tau]> 1e-6)

% A remains low until B is quasi stationary before 10 seconds
(A[tau] < 1e-8) until_[0, 10] always ((abs(ddt{B}[tau]) < 1e-9))

The result is a query language which is close enough to English formulation.
These examples are actually syntaxically valid in our implementation tool Breach

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 21 / 45



40 60 80 100 120

40

60

80

mm

Quantitative Semantics: the Satisfaction Function

A formula ϕ is evaluated against a single trajectory ξp at (the future of) a given
time τ

The satisfaction function is a real-valued function

τ → ρ(ϕ, ξp, τ) ∈ R

Its semantics is as follows:
I ρ(ϕ, ξp, τ) ≥ 0 iff ξp satisfies ϕ
I ‖ρ(ϕ, ξp, τ)‖ represents the robustness of the satisfaction or non satisfaction

Intuitively ρ is a measure of the signed distance to the set where ϕ is false.

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 22 / 45



40 60 80 100 120

40

60

80

mm

Computing the Satisfaction Function

The cost of computing ρ is linear in the size of the formula and the length
of the simulation (small computional overhead)

For a predicate µ(ξp, τ) ≥ 0, we have simply ρ(µ, ξp, τ) = µ(ξp, τ)

For operators: extension of the known correspondance between min−max
operators and boolean operators:

ρ(¬ϕ, ξp, τ) = −ρ(ϕ, ξp, τ)
ρ(ϕ1 ∧ ϕ2, ξp, τ) = min(ρ(ϕ1, ξp, τ), ρ(ϕ2, ξp, τ))
ρ(ev[a,b] ϕ) = max

τ ′∈[τ+a, τ+b]
ρ(ϕ, ξp, τ

′)

ρ(ϕ1U[a,b] ϕ2, ξp, t) = max
r∈τ+[a,b]

(min(ρ(ϕ2, ξp, r), min
s∈[τ,r ]

ρ(ϕ1, ξp, s))

Alexandre Donzé, Verimag Quantitative Temporal Logics for Systems Biology IBIS Workshop 23 / 45
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A Simple Formula
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Interpreting the Robust Satisfaction Function

ρ relates a trajectory (thus a parameter value) and a formula ϕ to a
number. This number measures the local robustness of ϕ.

To some extent, we can also compute the gradient of ρ, thus the
sensitivity of ϕ to parameters.

If ϕ defines a forbidden region, ρ measures the distance to this region.
The zero level set of ρ defines boundaries between safe and unsafe
parameter regions.
These can be computed with the same refinement procedure as before, or
using more advanced boundary detection algorithms.

For high-dimensional parameter sets, quasi-Monte Carlo sampling can be
used for an efficient coverage and a measure of a global robustness

For parameter synthesis, ρ can be used as an objective function in generic
global optimization algorithm
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An Enzymatic Network Involved in Angiogenesis
Collagen (C1) degradation by matrix metalloproteinase (M P

2 ) and membrane type
1 metalloproteinase (MT1) [KP04]

Ambiguous role of a tissue inhibitor T2
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Rigorous Steady State Analysis
In [KP04], activation of M P

2 after 12h “Nearly steady state” for T2(0) between 0
and 200 nM.

It turned out that steady state was not reached for T2(0) > 20 nM !

Using ϕ ≡ ev alw (|Ṁ2(t)| < ε×M P
2 (0)) we could guarantee the correct plot.
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Formalizing Synergism
Collagen can be degraded either by MT1 or by M2.

We defined a notion of
synergism by :

“Before 12h, 90 % of initial collagen is degraded: ev[0,12h](C1(τ)/C1(0) < 0.1)
and at least 50 % by M2: ev[0,12h](C1M2

d (τ) > C1MT1
d (τ)) ”
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Synergism, Result
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Synergism, Global Analysis
Varying all other parameters around 10% of nomimal value, and using
quasi-Monte-Carlo sampling, we measure the robustness of the regions found
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Open Model
To extend the model, we introduced production and degradation terms
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Open Model, Behaviors
As a consequence, the model exihibits more complex behaviors

, in
particular oscillations
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Detecting oscillations in M P
2

We used the formula

ϕ¬div = alw(M P
2 [t] < M P

2max)

to guarantee that the oscillation remains in a given range of amplitudes, in
conjunction with

ev alw
(
ev[0,6h)

(
dM P

2
dt [t] > kh ∧ ev[0,6h)

(
dM P

2
dt [t] < kl

)))
The first “eventually” suppresses the transient phase before the oscillations
and the “always” filters damped oscillations

Then requires that the concentration of M P
2 alternates between periods

when the it strictly increases and periods when it strictly decreases

The formula filters oscillations with a period greater than 12h
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Oscillations Map
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Oscillations Map
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Oscillation, Robustness
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Summary

As a field studying complex systems, systems biology can certainly benefit
from the development of formal methods

Specifically, temporal logics were developped to study rigourously dynamic
interactions and relations between systems components

This can be crucial in the developpment of useful (predictice, quantitative)
mechanistic models

I genuinely believe that the work I presented is already a potentially useful
framework for better understanding and designing models (though my
experience with biological models is still young)
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Summary

This work combines classical dynamical systems theory:
I Deterministic models of ordinary differential equations
I Uncertain initial conditions and parameters
I Numerical simulation, local and global sensitivity analysis

with
I A convenient query language to specify spatial and temporal

constraints on variables and parameters
I A satisfaction function which computes by how much a simulation

satisfies or violate a property
I Heuristics to synthesize sets of parameters generating trajectories

satisfying a property

A toolbox implementation, Breach, is available on my webpage
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Breach, parameters et properties
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Breach, trajectories
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Global Sensitivities histogram
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