From simple to multiscale models in oncology

Benjamin Ribba INRIA NuMed ENS Lyon, France

Workshop on Identification and Control of Biological Interaction Network

Montbonnot, 02 february 2011

General context

- The rate of successful drug development in oncology is about 5%
- Even for compounds entering phase III: 60% of failure rate
- FDA recommends the use of quantitative modeling to improve drug development process
- PK/PD models (modeling and simulation M&S)

Introduction

PK/PD MODELING APPROACH

PK/PD

- Pharmacokinetic (PK)
 - What the body does to the drug: time evolution of drug concentration in plasma
- Pharmacodynamic (PD)
 - What the drug does to the body: time evolution of a disease marker as a function of drug concentration

PK/PD data

- Sparse, especially for clinical data
- Mainly macroscopic measurements such as tumor size
- Carry out the analysis on a population of patients simultaneously and not just on few individuals

INRIA

Aims of M&S

- Estimate the different model parameters so that the evolution of the variable best fits the data
- Give an interpretation of the parameters in terms of biological properties of the tumor
- Give to these parameters a clinical interest (prognostics,...)
- Use simulations to explore different strategies

PK/PD model

- Structural part: Simple models of tumor growth have been developed
 - Gompertz-like model or few ODEs
- Statistical part: Population approach or mixed-effect nonlinear regression
- Strong validation with experimental data

Mixed-effect models

- Model complexity is given by the amount of available data
- Allows to quantify the magnitude of inter-individual variability
- Large panels of tools to assess the quality of the model (quantitative approach)
- Not the best tool to study the underlying complex mechanisms of action

Mixed-effect models

Study case MODELING THE PROCESS OF ANGIOGENESIS

Tumor angiogenesis

- A key process in tumor growth and development proposed by Judah Folkman from Harvard Medical School, since 1970:
 - "for tumors to develop in size and metastatic potential they must make an **angiogenic switch** through perturbing the local balance of proangiogenic and antiangiogenic factors"

Folkman J. Role of angiogenesis in tumour growth and metastasis. <u>Semin Oncol 2002</u>

Angiogenic switch

Bergers G and Benjamin LE. Tumorigenesis and the angiogenic switch. <u>Nat Rev Cancer 2003</u>

Rational for drug development

- Tumors could be controlled by cutting of their blood supply
- This can be done by:
 - Inhibition of proangiogenic factors
 - Stimulation of endogeneous inhibitors
- Nowadays, around 10 compounds approved by the FDA
 Kerbel B and Folkman L Clinical translat

Kerbel R and Folkman J. Clinical translation of angiogenesis inhibitors . Nat Rev Cancer 2002

The lessons

- High doses are required to destroy the whole vasculature
- High doses may be associated with toxicity profiles
 - FDA approved Avastin for small doses due to cardiac toxicities

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Clinical benefit

- When used alone, the clinical benefits of antiangiogenic drugs is small
- The combination with chemotherapy and radiotherapy can increase lifespan on average by 2 to 5 months in colorectal cancer, lung cancer, kidney cancer and GIST

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Open questions

- How long does the window of normalization last?
- When does it open and when does it end?
- How does it link with drug doses and schedules?
- How can we use this knowledge to combine antiangiogenic drugs with conventional therapies

Ribba et al. A model of vascular tumour growth in mice combining longitudinal tumour size with histological biomarkers. <u>Eur J Cancer 2010</u>

Histological data

- Hypoxic tissue percentage was assessed using the antibody anti-CA IX, a stable protein whose transcription is induced by HIF
- Necrotic tissue percentage was assessed by staining the same slice with Hematoxylin
- A microscope imaging station with software Histolab was used to quantify the corresponding areas

Histological data

Model schematic view

Model equations

Parameter estimates

Parameter (Unit)	Description	Mean value (SE %)	IAV (SE %)	Shrinkage (%)
P_0 (mm)	Initial tumor size	0.32 (25)	99 (8)	6
K ₀ (mm)	Initial carrying capacity	10.4 (58)	52 (20)	2
$\lambda_P(d^{-1})$	Growth rate for the non-hypoxic	1.24 (11)	62 (12)	4
$k_{PQ}\left(d^{-1} ight)$	Transfer rate from non- hypoxic to hypoxic tissue compartment	0.06 (12)	46 (35)	3
$\lambda_Q (d^{-1})$	Growth rate for the hypoxic tissue	I.43 (20)	65 (18)	I
$k_{QN}(d^{-1})$	Transfer rate from hypoxic to necrotic tissue compartment	0.07 (10)	61 (14)	
b (d-1)	Rate of increase of carrying capacity	0.03 (30)	95 (11)	6

Model evaluation

Ribba et al. A model of vascular tumour growth in mice combining longitudinal tumour size with histological biomarkers. <u>Eur J Cancer 2010</u>

What next...

Towards multiscale and complex models

New drugs

- Recently, development of innovative drugs targeting complex molecular processes involved in tumor growth
- Needs for more complex models integrating such processes
- Needs for complex models to predict the effect of a change in angiogenic factors on the whole tumor system
- We wish to couple PK/PD models to systems biologylike models

Multiscale approach

Tissue level

- Describe density of cells in different states (proliferating, hypoxic, necrotic)
- Transitions are function of the outputs of the molecular model

Application

Process of membrane degradation and invasion of surrounding tissues

Simulation: Ductal carcinoma in situ

Simulation: Invasion of epithelial layer

Ribba et al. A model of avascular tumor growth to investigate the benefit of anti-invasive agents. J Theor Biol 2006

Modeling angiogenesis

Billy et al. A multiscale model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. <u>J Theor Biol 2009</u>

Main issues

- Multiscale models can integrate a large number of equations
- How to correctly balance *a-priori* information and datadriven knowledge?
- How to efficiently include *a-priori* information?
 - ressource sharing and re-use throughout the community
- How to assess validation in these models?
- How to jump from one scale to the other?

Conclusions

- PK/PD models are powerful tools for drug development
 - mainly because they are simple
- Integrating complex biological network models is the next step
- Needs for new standard and validation methods

